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Electronic bands and phonon dispersions: theory and applications

Introduction

In this exercise, our aim is to compare the band structure of wurtzite ZnS and the imaginary
part of dielectric constant as a function of frequency with the ones given in Phys. Rev.
164, 1069 (1967) .
ZnS is a semiconductor with the wurtzite structure. This structure has four atoms in the
unit cell. The Zn atoms occupy the hcp sites while the S atoms are in one half of the
tetrahedral sites. Putting the origin in the middle of the bond the Cartesian coordinates
of the atoms are (where for u we take the ideal value u = 3/8):

dZn1 = a(1/2, 1/(2
√

3),−7c/(16a))

dZn2 = a(−1/2,−1/(2
√

3), c/(16a))

dS1 = a(1/2, 1/(2
√

3), c(u− 7/16)/a) =

= a(1/2, 1/(2
√

3),−c/(16a))

dS2 = a(−1/2,−1/(2
√

3), c(u+ 1/16)/a)

= a(−1/2,−1/(2
√

3), 7c/(16a))

The size of the hexagonal Bravais lattice is a = 3.811Å , and for the ration c/a we can take
the ideal value c/a =

√
8/3.

In order to introduce the notation, we have:[
− ~2

2m
∇2 + U (r)

]
Ψk,n(r) = εn(k)Ψk,n(r) (1)

As shown in the lectures, using:

Ψk,n(r) =
∑
G

ck+G,ne
i(k+G)·r (2)

we achieve: ∑
G

[
~2

2m
|k + G|2δG,G′ + U

(
G′ −G

)]
ck+G,n = εn(k)ck+G′,n (3)

where :
U (G) =

∑
γ

V γ(|G|)
∑
s∈γ

e−iG·ds (4)

with:
V γ(|G|) =

∫
vγ(r)e−iG·rd3r (5)

We can put U (G) in the following form (as shown below):

U (G) =
[
SS(G)V S

G + iSA(G)V A
G

]
(6)

where SS and SA are the symmetric and antisymmetric structure factors, and V S and V A

are the symmetric and antisymmetric form factors given by:

SS(G) =
1

n

∑
j

e−iG·δj SA(G) = − i
n

∑
j

Pje
−iG·δj (7)

V S
G =

n

Ω

∫
1

2

[
v1(r) + v2(r)

]
e−iG·rd3r =

n

2

[
V 1(|G|) + V 2(|G|)

]
(8)

V A
G =

n

Ω

∫
1

2

[
v1(r)− v2(r)

]
e−iG·rd3r =

n

2

[
V 1(|G|)− V 2(|G|)

]
(9)
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where n is the number of atoms per unit cell ( 2 for zinc blende and 4 for wurtzite ), Ω is
the volume of the unit cell, δj is the position vector of the j-th atom in the unit cell and
the index j includes all the atoms of a unit cell in the summation, Pj is +1 if j denotes
one type of atom and Pj is -1 if j denotes the other type of atom, and v1(r) and v2(r) refer
to the potentials of the atoms of type 1 and type 2 , respectively.

Proof.[
SS(G)V S

G + iSA(G)V A
G

]
= (10)∑

j

e−iG·δj
1

2

[
V 1(|G|) + V 2(|G|)

]
+
∑
j

Pje
−iG·δj 1

2

[
V 1(|G|)− V 2(|G|)

]
= (11)

=
∑
j1

e−iG·δj1
1

2

[
V 1(|G|) + V 2(|G|)

]
+
∑
j1

e−iG·δj1
1

2

[
V 1(|G|)− V 2(|G|)

]
(12)

+
∑
j2

e−iG·δj2
1

2

[
V 1(|G|) + V 2(|G|)

]
−
∑
j2

e−iG·δj2
1

2

[
V 1(|G|)− V 2(|G|)

]
= (13)

=
∑
j1

e−iG·δj1V 1(|G|) +
∑
j2

e−iG·δj2V 1(|G|) =
∑
γ

V γ(|G|)
∑
s∈γ

e−iG·ds = U (G) (14)

�

The wurtzite structure semiconductors are closely related to the zinc-blendes. The nor-
malization of the form factors to the volume per atom allows the use of zinc-blende form
factors for wurtzite without a change in normalization. The small density difference be-
tween zinc-blende and wurtzite is ignored.
If the center of the unit cell is chosen so that the position of each atom of the first type
moves to the position of an atom of the second type upon spatial inversion (as in our case),
then the structure factors are real (as shown below).
This can be achieved for both zinc-blende and wurtzite. When the nearest neighbor dis-
tance is the same in the wurtzite and zinc-blende structures, the lattice constants are
related by aZB =

√
2aW .

In zinc-blende, reciprocal lengths are measured in units of (2π/aZB) so that the recipro-
cal lattice vectors have the smallest possible integers as their Cartesian components. To
compare these with the reciprocal lattice vectors of wurtzite, we must measure reciprocal
lengths in wurtzite in units of

(√
2π/aW

)
.

The form factors for the wurtzite structure, the square magnitudes for the reciprocal lattice
vectors (in units of (2π/aZB) =

(√
2π/aW

)
) and the structure factors are given in Table

II of Phys. Rev. 164, 1069(1967) that we report here.
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Figure 1: Reciprocal lattice vectors, structure factors for wurtzite and form factors, in Ry, used
in this work. Column 1 contains a representative from each set of equivalent reciprocal lattice
vectors. Column 2 contains the magnitudes of these vectors in units of (2π/aZB) . Columns 3
and 4 contain the structure factor which are shown as two-place decimal fractions. The remaining
columns contain the symmetric and antisymmetric form factors.

In order to get the same square modules of G vectors in the table, we can use these
primitive lattice vectors (a ≡ aW ):

a1 = a

(
1

2
,

√
3

2
, 0

)
; a2 = a

(
−1

2
,

√
3

2
, 0

)
; a3 = a

(
0, 0,

√
8

3

)
(15)

From which, we get:

b1 =
2π

a

(
1,

1√
3
, 0

)
; b2 =

2π

a

(
−1,

1√
3
, 0

)
; b3 =

2π

a

(
0, 0,

√
3

8

)
(16)

The form factors for the wurtzite lattice are obtained from the form factors for the zinc
blende lattice by interpolation, for this reason the square modulus of G vectors, in the
table, are in unit of (2π/aZB).
In order to check by hand the values in the second column got by those of the first one,
we consider:

G2 =
8

3
l2 +

8

3
m2 +

3

4
n2 − 8

3
lm where G = (l,m, n) (17)

Proof.

G2 = |(l,m, n)|2 1(
2π

aZB

)2 = (lb1 +mb2 + nb3) · (lb1 +mb2 + nb3)
1(

2π

aZB

)2 = (18)

= (l2|b1|2 +m2|b2|2 + n2|b3|2 + 2lmb1 · b2)
1(

2π

aZB

)2 = (19)

page 3 of 14



Electronic bands and phonon dispersions: theory and applications

=

(
2π

aW

)2

(
4

3
l2 +

4

3
m2 +

3

8
n2 − 4

3
lm)

1(
2π

aZB

)2 =

(
aZB
aW

)2

︸ ︷︷ ︸
2

(
4

3
l2 +

4

3
m2 +

3

8
n2 − 4

3
lm)

(20)

=
8

3
l2 +

8

3
m2 +

3

4
n2 − 8

3
lm (21)

�

In order to write explicitely the structure factors, I define:

d1 ≡ dZn1 d2 ≡ −dZn2 (22)

In this way:

dS1 = d2 dS2 = −d1 (23)

In the code, I compute the structure factors using the following formulas:

SS(G) =
1

2
(cos(G · d1) + cos(G · d2)) (24)

SA(G) =
1

2
(− sin(G · d1) + sin(G · d2)) (25)

Proof.

SS(G) =
1

n

∑
j

e−iG·δj =
1

4
(e−iG·d1 + e+iG·d2 + e−iG·d2 + e+iG·d1) = (26)

=
1

2
(cos(G · d1) + cos(G · d2)) (27)

SA(G) =− i

n

∑
j

Pje
−iG·δj =

1

4i
(e−iG·d1 + e+iG·d2 − e−iG·d2 − e+iG·d1) = (28)

=
1

2
(− sin(G · d1) + sin(G · d2)) (29)

�

If we want to verify by hand in a fast way the values of structure factors in table, it’s better
to rewrite the previous formulas as :

SS(G) = cos

(
2π(

l −m
2

+
l +m

6
− 4n

16
)

)
cos

(
π

3n

8

)
(30)

SA(G) = cos

(
2π(

l −m
2

+
l +m

6
− 4n

16
)

)
sin

(
π

3n

8

)
(31)

(32)

Proof.

G · d1 = (lb1 +mb2 + nb3) · a(
1

2
,

1

2
√

3
,− 7c

16a
) = (33)

= 2π(l −m, 1√
3

(l +m), n
a

c
) · (1

2
,

1

2
√

3
,− 7c

16a
) = (34)

= 2π(
l −m

2
+
l +m

6
− 7n

16
) (35)
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G · d2 = (lb1 +mb2 + nb3) · a(
1

2
,

1

2
√

3
,− c

16a
) = (36)

= 2π(l −m, 1√
3

(l +m), n
a

c
) · (1

2
,

1

2
√

3
,− c

16a
) = (37)

= 2π(
l −m

2
+
l +m

6
− n

16
) (38)

Hence:

SS(G) =
1

2

[
cos

(
2π(

l −m
2

+
l +m

6
− 7n

16
)

)
+ cos

(
2π(

l −m
2

+
l +m

6
− n

16
)

)]
=

=
1

2

cos

(
2π(

l −m
2

+
l +m

6
− 4n

16
− 3n

16
)

)
︸ ︷︷ ︸

cos(a−b)

+ cos

(
2π(

l −m
2

+
l +m

6
− 4n

16
+

3n

16
)

)
︸ ︷︷ ︸

cos(a+b)

 =

= cos

(
2π(

l −m
2

+
l +m

6
− 4n

16
)

)
cos

(
2π

3n

16

)
SA(G) =

1

2

[
− sin

(
2π(

l −m
2

+
l +m

6
− 7n

16
)

)
+ sin

(
2π(

l −m
2

+
l +m

6
− n

16
)

)]
=

=
1

2

− sin

(
2π(

l −m
2

+
l +m

6
− 4n

16
− 3n

16
)

)
︸ ︷︷ ︸

sin(a−b)

+ sin

(
2π(

l −m
2

+
l +m

6
− 4n

16
+

3n

16
)

)
︸ ︷︷ ︸

sin(a+b)

 =

= cos

(
2π(

l −m
2

+
l +m

6
− 4n

16
)

)
sin

(
2π

3n

16

)
�

Code: Band structure

The program allow us to choose if compute the band structure or the immaginary part of
dieletric constant. Here we discuss the part of the code that computes the band structure.
This is based on the CB program that we have largely analized during the lectures. We
discuss only the main changes:

• set_cb_parameters(crystal_name)

In order to set the CB parameters of ZnS wurtzite, I have defined a matrix: cb_parameters(12,3)
where the column 1 contains |G|2 (in (2π/aW )2 units) of table in fig.1. In the table,
|G|2 are in (2π/aZB)2 = (

√
2π/aW )2 units, hence, I have divided the values of the

table by 2. The column 2 and 3 contain the symmetric and antisymmetric form
factors.

• set_lattice(at, bg, ’hex’)

Here, I have just set the coordinates of the direct lattice primitive vectors.

• set_hamiltonian(xk(:,ik), ecut)

The main structure of the subroutine is the same. I have adapted the formulas of
structure factors that we have in our case (eq.24 and eq.25). Moreover, I have coded
few lines with the aim of finding which is the row of the matrix cb_parameters(12,3)
that contains a specific |G|2 and using this information to find the associated form
factors.
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I would like to point out that I can make this code general with only small changes (not
necessary for this excercise) for the structures as wurtzite where you need to store all the
G2 and the form factors.

Setting the plot

In order to plot the band structure of ZnS wurtzite, we must find the coordinates of the
points of the path A− L−M − Γ−A−H −K − Γ which are the high symmetry points
shown in this figure:

Figure 2: The Brillouin zone and a few high symmetry points.

We have (in units of
2π

a
):

A =

(
0, 0,

1

2

√
3

8

)
L =

(
1

2
,

1

2
√

3
,
1

2

√
3

8

)
M =

(
1

2
,

1

2
√

3
, 0

)
(39)

Γ = (0, 0, 0) H =

(
2

3
, 0,

1

2

√
3

8

)
K =

(
2

3
, 0, 0

)
(40)

Proof. Considering the sketch in figure of the BZ on the plane z=0 (drawn with the usual
procedure), we have:

Figure 3: Sketch by hand of BZ in z=0 plane.

M =
b1

2
=

(
1

2
,

1

2
√

3
, 0

)
(41)
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In order to find the point K, we consider:

b1 · (x−
b1

2
) = 0 → (x− 1

2
) +

1√
3

(y − 1

2
√

3
) = 0 (42)

Setting y=0, we get:

x =
2

3
→ K =

(
2

3
, 0, 0

)
(43)

We can get the other points just adding
b3

2
= (0, 0,

1

2

√
3

8
) to the previous ones . �

These coordinates are to be inserted into the input file for the program. In order to set
the labels of x-axis of the band structure plot, we need to know the distance between the

path points which can be easily found (e.g.|A− L| = 1√
3

; |M−K| = 1

3
).
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Comparing the band structures

Figure 4: Band structure that I plotted using CB program (setting nbands = 25, ECUT =
27.0 in units of Ry(2π/a)2).

Figure 5: Band structure of ZnS wurtzite in Phys. Rev. 164, 1069. I put a red horizontal line
that intersects the lowest point of the conduction bands.

The two plots are quite similar to the eye.
We observe that we have a direct gap in the point Γ. We can measure the distance between
the highest point of the valence bands (in red) and the lowest point of the conduction bands
(in green):

dgap ' 3.6 (44)

(where I used the energy values of these points in the output file of the program.)
This value is in agreement with what we can see by figure 5. Moreover, the other gaps
seems also to be in agreement.
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Figure 6: Zoom of the direct gap.

Immaginary part of dieletric constant

The imaginary part of the dielectric constant, in c.g.s. units, can be written as:

ε2,i(ω) =
e2

πm2ω2

∑
v,c

∫
BZ

δ (εc(k)− εv(k)− ~ω) |pvc|2 d3k (45)

where pvc is the matrix element of the pz (px) operator between valence and conduction
Bloch functions when the field is parallel (perpendicular) to the c axis:

pvc = 〈Ψk,v| p̂i |Ψk,c〉 with i = x, z (46)

We show now the following result:

pvc = ~V
∑
G

c∗k+G,vck+G,c(k + G)i (47)

Proof.
We have:

Ψk,c(r) =
∑
G

ck+G,ce
i(k+G)·r (48)

Then,

p̂i |Ψk,c〉 = −i~ d

dxi
|Ψk,c〉 = ~

∑
G

ck+G,c(k + G)ie
i(k+G)·r (49)

pvc = 〈Ψk,v| p̂i |Ψk,c〉 = ~
∫
dr
∑
G′

c∗k+G′,ve
−i(k+G′)·r

∑
G

ck+G,c(k + G)ie
i(k+G)·r = (50)

= ~
∑
G,G′

c∗k+G′,vck+G,c(k + G)i

∫
drei(G−G

′)·r︸ ︷︷ ︸
V δG,G′

= ~V
∑
G

c∗k+G,vck+G,c(k + G)i (51)

�
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Therefore:

ε2,i(ω) =
e2

πm2ω2

∑
v,c

∫
BZ

δ (εc(k)− εv(k)− ~ω) |pvc|2 d3k = (52)

=
V 2~2e2

πm2ω2

∑
v,c

∫
BZ

δ (εc(k)− εv(k)− ~ω)

∣∣∣∣∣∑
G

c∗k+G,vck+G,c(k + G)i

∣∣∣∣∣
2

d3k (53)

(54)

We use the fact that :∫
BZ

d3k → (2π)3

V

∑
k

with V = NΩ = N1N2N3Ω (55)

where N= N1N2N3 is the number of k points in the sum and Ω is the volume of the unit
cell. Hence:

ε2,i(ω) = (2π)3 V ~2e2

πm2ω2

∑
k

∑
v,c

δ (εc(k)− εv(k)− ~ω)

∣∣∣∣∣∑
G

c∗k+G,vck+G,c(k + G)i

∣∣∣∣∣
2

(56)

We use one of the equivalent definitions of Dirac Delta:

δ(t) = lim
σ→0

1√
2πσ

e−t
2/2σ2

(57)

ε2,i(ω) = lim
σ→0

(2π)3 V ~2e2

πm2ω2

∑
k

∑
v,c

e−(εc(k)−εv(k)−~ω)2/2σ2

√
2πσ

∣∣∣∣∣∑
G

c∗k+G,vck+G,c(k + G)i

∣∣∣∣∣
2

From the orthonormality of Ψk,n(r) =
∑

G ck+G,ne
i(k+G)·r, we know that ck+G,n has the

dimension of
1√
V
. Moreover, (k + G)i is in unit of

2π

a
. Since the argument of the exp

must be dimensionless, σ must have the dimension of energy. Therefore, we write all the
previous quantities in an adimensional form:

• ck+G,n →
ck+G,n√

V

• (k + G)i →
2π

a
(k + G)i →

2π

aaB
(k + G)i

• σ → σ Ry, ~ω → ~ω Ry, εn(k)→ εn(k) Ry

• V = NΩ→ NΩa3
B

ε2,i(ω) = lim
σ→0

(2π)5

a2a2
B

~4e2

V︸︷︷︸
NΩa3B

πm2(~ω)2 Ry3

∑
k

∑
v,c

e−(εc(k)−εv(k)−~ω)2/2σ2

√
2πσ

∣∣∣∣∣∑
G

c∗k+G,vck+G,c(k + G)i

∣∣∣∣∣
2
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The plot of ε2(ω) that we have to compare with is in arbitrary units, hence we choose to
put ε2(ω) in units of:

(2π)5

a2a2
B

~4e2

Ωa3
Bπm

2 Ry3 =
(2π)5

a2Ωπ

~4

a4
Bm

2 Ry3︸ ︷︷ ︸
1/Ry

e2

aB
=

(2π)5

a2Ωπ︸ ︷︷ ︸
adimensional, Ω = a2c

√
3

2

e2

aBRy
= (58)

=
(2π)5

a5
√

2π

e2

aBRy
= 0.1138

e2

aBRy
(59)

And we have :

ε2,i(ω) =
1

N(~ω)2
lim
σ→0

∑
k

∑
v,c

e−(εc(k)−εv(k)−~ω)2/2σ2

√
2πσ

∣∣∣∣∣∑
G

c∗k+G,vck+G,c(k + G)i

∣∣∣∣∣
2

︸ ︷︷ ︸
|pvc|2(adimensional)

(60)

Code: Im. part of dielectric constant

We discuss the part of the code that computes the immaginary part of dieletric constant.
This is very similar to the program to calculate the DOS, but in a case of not zero potential
(that we can approach using subroutines of CB program that we have seen). The main
changes from the DOS + CB program that I made are the following: in the input_cb
subroutine I put a new variable pol to be inserted in input which is the polarization that
it can be 1,2 or 3 in order to compute ε2,pol(ω) . Moreover, in cb_permittivity we have
implemented the formulas eq.(60). We sum over a mesh of k points which are generated
thanks to the subroutine kgen(nk1, nk2, nk3, bg). I have coded two cycles over the valence
(8 in total) and conduction bands ((nbnd− 8) in total) which contain an implementation
of |pvc|2 (in adimensional units) multiplied by the gaussian generated by the subroutine
gaussian(x, sigma) . pvc is easily computed observing that ck+G,n are stored in the eigen-
vector matrix evc(..,..) which is filled in the diagonalize() subroutine.
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Comparing plots of Im. part of dielectric constant

Figure 7: On the left, we have ε2(ω) with perpendicular polarization, while on the right parallel
polarization. (The parameters used are nbnds = 17, ECUT = 16.0 in units of Ry(2π/a)2, σ =
0.1 eV, a grid of 59× 59× 59 k points. The computation was realized over [3.0, 10.0] eV using 200
points in this interval. )

Figure 8: ε2(ω) in the reference in arbitrary units as a function of ω in eV for hexagonal ZnS.

We can observe that the positions of the peaks of our plots are in agreement with the ones
in the reference figure.
As shown in the following, I have checked my results increasing the number of k points in
the grid keeping fixed the other variables, increasing the number of bands keeping fixed
the other variables and decreasing σ. We show the results we obtained, for example, for
parallel polarization.
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Increasing the number of k-points

Figure 9: ε2(ω) with perpendicular polarization on the left, while on the right parallel polarization.
Red line for 10× 10× 10 k points, Green line for 28× 28× 28 k points, Blue line for 59× 59× 59
k points, (The parameters used are: nbnds = 17, ECUT = 16.0 in units of Ry(2π/a)2, σ = 0.1 eV.
The computation was realized over [3.0, 10.0] eV using 200 points in this interval.)

Increasing the number of bands

Figure 10: ε2(ω) with parallel polarization. Red line for 14 bands, Green line for 15 bands,
Blue line for 17 bands, Orange line for 22 bands. (The parameters used are: ECUT =
22.0 in units of Ry(2π/a)2, σ = 0.1 eV, a grid of 28 × 28 × 28 k points. The computation was
realized over [3.0, 10.0] eV using 200 points in this interval.) As expected, the curves start to be
different only at high energy.
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Different smearing of gaussians for different k grid dimensions and energy
values

Figure 11: The case of E=3.0 eV , E=6.5 eV and E=10.0 eV are shown. The figures show the
convergence of imaginary part of dielectric constant (z-polarization) for different values of grid
dimensions nk× nk× nk (nk = 7, 14, 21, 28) on the x axis and different values of sigma (σ = 0.4,
0.2, 0.15, 0.1 eV). The red line indicates the value that I got using a mesh of 59x59x59 k points
and σ = 0.1 eV. (The parameters used are: nbnds = 17, ECUT = 16.0 in units of Ry(2π/a)2. The
computation was realized over [3.0, 10.0] eV.)
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