1. Gate teleportation (12 points: $4+2+2+1+3$)

The fundamental primitive of MBQC is called gate teleportation, a simple version of which can be demonstrated in the following circuit:

Here, the entangling gate is a controlled- Z acting on a two-qubit state as $C Z|a b\rangle=$ $(-1)^{a b}|a b\rangle$.
a) Suppose that in the above circuit we measure the first register in the Z eigenbasis. Write the resulting state on the remaining subsystem in terms of the input state, depending on the measurement outcome m (you can neglect the normalization constant) ${ }^{1}$.

$$
\begin{aligned}
& \left|\psi^{\prime}\right\rangle=(H \otimes \mathbb{1})(C-2)(\underline{1} \otimes H)|\psi\rangle \otimes|0\rangle= \\
& =(H \otimes \mathbb{1})(C-2)|\psi\rangle \otimes|+\rangle \\
& =(H \otimes \mathbb{1})(C-2)(a|0\rangle+b|f\rangle) \otimes|+\rangle \\
& |\psi\rangle=a|\omega\rangle+b|1\rangle \\
& =(H \otimes \mathbb{1})(a|0\rangle \otimes|+\rangle+b|z\rangle \otimes|-\rangle) \\
& \langle-2 \mid 0\rangle \otimes|+\rangle=|0\rangle \otimes|+\rangle \\
& (-2 \mid 1) \otimes|t\rangle=|1\rangle \otimes \mid \rightarrow \\
& =a|+\rangle \otimes|+\rangle+b|-\rangle \otimes|-\rangle
\end{aligned}
$$

- MEASUREMENT $\{|0\rangle\langle a| \otimes 1|| 1\rangle,\langle\mathcal{1} \mathcal{1}\}$

$$
\text { - } \begin{aligned}
|m\rangle\langle m| \otimes \perp\left|\psi^{\prime}\right\rangle & =a\langle m \mid+\rangle|m\rangle \otimes|+\rangle+b\langle m \mid-\rangle|m\rangle \otimes|-\rangle= \\
\substack{\uparrow=0, f} & =\frac{a}{\sqrt{2}}|m\rangle \otimes|+\rangle+\frac{(-1)^{m}}{\sqrt{2}} b|m\rangle \otimes|-\rangle
\end{aligned}
$$

$$
\begin{aligned}
&=|m\rangle \otimes \frac{1}{\sqrt{2}}\left(a|+\rangle+b(-1)^{m}|-\rangle\right) \\
&=\frac{1}{\sqrt{2}}|m\rangle \otimes\left(a|+\rangle+b(x)^{m}|-\rangle\right) \\
&=\frac{1}{\sqrt{2}}|m\rangle \otimes\left(\left.x\right|^{m}(a|+\rangle+b|-\rangle)\right. \\
& x^{m|+7=|+\rangle} \\
&=\frac{1}{\sqrt{2}}|m\rangle \otimes x^{m} H|\psi\rangle \\
& \Rightarrow\left|\psi^{\prime}(m)\right\rangle=x^{m} H|\psi\rangle
\end{aligned}
$$

b) Imagine taking the output state of the second wire, denoted $\left|\psi^{\prime}\left(m_{1}\right)\right\rangle$, following a measurement with outcome m_{1}, and feeding it back to a similar circuit, with measurement outcome m_{2}. Can you write the output state in terms of $|\psi\rangle$? Hint: you shouldn't need to do any calculation.

$$
\left|\psi^{\prime \prime}\left(m_{2}\right)\right\rangle=x^{m_{2}} H\left|\psi^{\prime}\left(m_{1}\right\rangle\right\rangle=x^{m_{2}} H x^{m_{1}} H|\psi\rangle
$$

A key insight in MBQC is that if we want to repeat the above process n times we can prepare an entangled n-quit resource state $|\Gamma\rangle$ beforehand, independent of the input state $|\psi\rangle .|\Gamma\rangle$ can be depicted as a one-dimensional strip of pair-wise entangled quits, called a 1-d cluster state. We can then entangle $|\psi\rangle$ to the first quit of the strip and subsequently only perform measurements (and possibly single-qubit Pauli corrections to remove the dependency of the output on measurement outcomes). Since $\langle Z= \pm 1| H=\langle X= \pm 1|$, you can convince yourself that in circuit 1 after the $C Z$ the first quit is effectively measured in the X basis. In the following point, we consider the H gates right before the computational basis measurement as "part of an X measurement process".
c) Draw a sketch of the circuit resulting from the n-fold repetition of the citcuit in Eq. 1 and write an expression for the resource state $|\Gamma\rangle$ (Hint: $C Z$ gates on different quits all commute and isolate all measurements at the end of the circuit.)

$$
\Pi>=\left(\prod_{i=1}^{[n / 2]} C-2(2 i-1), 2 i\right) H^{\otimes h}|0\rangle^{8 h}
$$

d) Consider $R_{z}(\theta)=\exp \left(-\mathrm{i} \frac{\theta}{2} Z\right)$ and define $X_{\theta}=R_{z}(\theta)^{\dagger} X R_{z}(\theta)$. Show that

$$
\begin{equation*}
X_{\theta} R_{z}^{\dagger}(\theta) H|Z=m\rangle=(-1)^{m} R_{z}^{\dagger}(\theta) H|Z=m\rangle \tag{2}
\end{equation*}
$$

$$
\begin{aligned}
& X_{8} R_{2}^{+}(8) H|m\rangle=R_{2}^{+}(8) \times H|m\rangle= \\
& \equiv R_{2}^{+}(8) \underbrace{H \times H}_{Z^{\prime}}|m\rangle \\
& H^{2}=1 \\
&=(-1)^{m} R_{2}^{+}(8) H|m\rangle
\end{aligned}
$$

e) Consider the following circuit

where the measurement is in the computational basis. What is the observable that is effectively measured on the first quit after the $C Z$? And what is the output state of the circuit, depending on the measurement outcome? Hint: the $R_{z}(\theta)$ commutes with $C Z$.

$$
\begin{aligned}
\cdot\left\langle\phi^{\prime}\right|(2 \otimes 11)\left|\phi^{\prime}\right\rangle & =\langle\phi|\left(H R_{2}(\theta)\right)^{+} \mathbb{1}(2 \otimes \mathbb{1})\left(H R_{2}(\phi) \otimes \mathbb{1}|\phi\rangle\right. \\
& =\langle\phi|\left(R_{2}^{+}(\theta) H \otimes \mathbb{1}\right)(2 \otimes \mathbb{1})\left(H R_{2}(8) \otimes \mathcal{1}\right)|\phi\rangle
\end{aligned}
$$

\Rightarrow The bernatle is $R_{2}^{+}(\theta) \underbrace{H \mid Z H R_{2}}_{=x}(\theta)=R_{2}^{+} X R_{2}(\theta)=X_{8}$

$$
\begin{aligned}
& \left(\begin{array}{c}
(-2= \\
|0\rangle\langle 0| \otimes \mathscr{H}+|f\rangle\langle A| \otimes 2 \\
i \frac{\pi\left(\frac{1-\nu_{1}}{2}\right) \frac{\left(1-z_{2}\right)}{2}}{\pi} \\
e^{1}
\end{array}\right) \\
& \left.||m\rangle\langle m| \otimes \mathcal{I}| \phi^{\prime}\right\rangle=(|m\rangle\langle m| \otimes \mathcal{H})\left(H R_{2}(8) \otimes \mathcal{L}| | \phi\right\rangle \\
& =(|m\rangle\langle m| \otimes \mathcal{L})\left(H R_{2}(8) \otimes \mathcal{L}\right)(-2(11 \otimes H)|\otimes| \otimes|\theta\rangle \\
& =(|m\rangle\langle m| \otimes \mathcal{H})(H \otimes \mathcal{H})\left(-2(\mathcal{L} \otimes H)\left(R_{2}(8) \otimes 1\right)|\psi| \otimes|\theta\rangle\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { We had it before } \\
& \Rightarrow\left|\psi^{\prime}(m)\right\rangle=x^{m} H R_{2}(8)|\psi\rangle
\end{aligned}
$$

Since we get the Hadamard gate "for free" according to circuit 1, this result, together with the results in previous sheets shows us that a 1-d cluster state and single-qubit measurements are sufficient to perform an arbitrary single-qubit operation. The result is furthermore deterministic if we can operate corrective X operations depending on measurement outcomes.
2. Universal Quantum Computation with Cluster States 8 Points: $3+1+2+2$

In this exercise we consider a two dimensional cluster state where qubits are arranged in a rectangular grid

where nodes are qubit registers. This state can be obtained by preparing each qubit in the $|+\rangle$ state and applying $C Z$ operations between qubits connected by an edge. This general procedure can be used to produce states represented by any graph, which are simply called graph states. Cluster states, described by a rectangular grid, lie at the core of measurement based quantum computation (MBQC) because, given one such state, one can perform any quantum computation with single qubit measurements (in various bases), provided the rectangular patch is large enough. In the present exercise, we will sketch a proof of this fact. According to the previous exercise, it is sufficient to show that we can perform two-qubit gates. To this end, let us start with some definitions.

The stabilizer formalism is once again useful to compactly describe what is going on. The stabilizer generators of an arbitrary graph state $|\Gamma\rangle$, with Γ some graph, are given by

$$
\begin{equation*}
\mathcal{S}=\left\{X_{a} \prod_{i \sim a} Z_{i} \mid a \in \Gamma\right\} \tag{4}
\end{equation*}
$$

where $i \sim a$ denotes the set of qubits adjacent (connected) to qubit a. In paticular, it holds that $S_{a}|\Gamma\rangle=|\Gamma\rangle \forall S_{a} \in \mathcal{S}$.
a) Consider the graph state represented by

Write down the stabilizer generators of this state according to Eq. 4 and check that they indeed stabilize the state. Hint: write the stabilizer of the state by conjugating the ones of the $|+++\rangle$ state by the appropriate $C Z s$.

- The state is $\left(-2(4,2)(-2(2,3) 1+)^{83}\right.$
- stabilizers for $1+\rangle^{83}$ are $\left\langle X_{1}, x_{2}, x_{3}\right\rangle$
- stabilizers for $(-2(2,3) 1+\rangle^{83}$ are:

$$
\begin{aligned}
& \left\langle c-z_{2,3} x_{2} c-z_{2,3}^{+}, c-z_{2,3} x_{2}\left(c-z_{2,3},+c-z_{2,3} x_{3}\left(l-z_{2,3}^{+}\right)^{+}\right\rangle\right. \\
= & \left\langle x_{2}, x_{2} z_{3}, z_{2} x_{3}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
c-2_{2,3} x_{2}\left(c-z_{2,3}\right)^{+}\left|x_{2, x_{3}}\right\rangle & =\left(-z_{2,3} x_{2}(-1)^{x_{2} x_{3}}\left|x_{2}, x_{3}\right\rangle\right. \\
& =(-1)^{x_{2} x_{2}+\bar{x}_{2} \cdot x_{3}}\left|\bar{x}_{2}, x_{3}\right\rangle \\
& =(-1)^{x_{3}}\left|\bar{x}_{2}, x_{3}\right\rangle= \\
& =x_{2} z_{3}\left|x_{2}, x_{3}\right\rangle
\end{aligned}
$$

$$
\text { - } \begin{aligned}
\left(-2_{2,3} x_{3} c-z_{2,3}\left|x_{2}, x_{3}\right\rangle\right. & =(-f)^{x_{2} \cdot x_{3}+x_{2} \cdot \bar{x}_{3}}\left|x_{2}, \bar{x}_{3}\right\rangle \\
& =(-f)^{x_{2}}\left|x_{2}, \bar{x}_{3}\right\rangle \\
& =z_{2} x_{3}
\end{aligned}
$$

stabilizers for $\left(-22_{(, 2)}(-2(2,3)+)^{83}\right.$;

$$
\begin{aligned}
& \left(-z_{(1,2)}\left\langle x_{2}, x_{2} z_{3}, z_{2} x_{3}\right\rangle\left(-z_{(f, 2)}=\right.\right. \\
= & \left\langle x_{1} z_{2}, z_{1} x_{2} z_{3}, z_{2} x_{3}\right\rangle \\
\uparrow & \left(-z_{1,2} x_{1}\left(-z_{1,2}\left|x_{1}, x_{2}\right\rangle=(-1)^{x_{2}, x_{2}+x_{1}, x_{2}}\left|x_{1}, x_{2}\right\rangle=x_{1} z_{2}\left|x_{1}, x_{2}\right\rangle\right)\right.
\end{aligned}
$$

We now use stabilizers to prove two useful tricks that allow us to easily modify the shape of a 2-d cluster state. Remember that when we have a stabilizer state with stabilizer generators $\left\{S_{j}\right\}$ and we want to measure some Pauli operator O, we can represent the action of a measurement as follows: if O commutes with all stabilizers, the measurement result is predetermined and the state is unchanged (being already an eigenstate of O. If O does not commute with some stabilizers, we can find a set of generators such that only one generator, say S_{1}, anti-commutes with O. This set can be found by multiplying some of the generators together. Following the measurement, we replace S_{1} with $(-1)^{m} O$, where m is the measurement outcome.
b) Consider again the graph state represented by

Show that measuring the second qubit in the X basis the stabilizers of the postmeasurement state are those of a two-qubit cluster, apart for a Hadamard on either the first or the third quit and measurement-dependent phases. Hint: start by finding a set of generators such that only one anti-commutes with the measurement. Multiply then the post-measurement stabilizers to remove unwanted dependencies on operators acting on the measured quit.

- The stabilizers sore:

$$
\cdot\left\langle x_{1}^{\gamma_{1}} z_{2}, z_{1} x_{2}^{x_{2}} z_{3}, z_{2}^{\gamma_{3}^{\prime \prime}} x_{3}^{\gamma_{3}}\right\rangle
$$

- X_{2} communes with $z_{g} x_{2} z_{3}$, late does nit commute with $x_{1} z_{2}, z_{2} x_{3}$.

$$
\begin{array}{r}
\Rightarrow x_{f} z_{2}, z_{f} x_{2} z_{3}, \\
\left.g_{1} g_{3}\right\rangle \\
x_{1} x_{3}
\end{array}
$$

- X_{2} commutes with all apart from $x_{1} Z_{2}$.
- Aster measurement, the stab. generators sill be:

$$
\left\langle(-f)^{m} x_{2}, z_{1} x_{1} z_{3}, x_{1} x_{3}\right\rangle=\left\langle(-f)^{m} x_{2},(-f)^{m} z_{1} z_{3}, x_{1} x_{3}\right\rangle=
$$

$$
=\left\langle(-1)^{m} x_{2},(-1)^{m} z_{1} z_{3}, x_{1} x_{3}\right\rangle
$$

- Apply Hodarnand on the first quit \Rightarrow

$$
\begin{aligned}
& \left\langle(-1)^{m} x_{2},(-f)^{m}\left(H z_{1} H\right) z_{3},\left(H x_{2} H\right) x_{3}\right\rangle \\
& =\left\langle(-1)^{m} x_{2},(-1)^{m} x_{1} z_{3}, z_{1} x_{3}\right\rangle
\end{aligned}
$$

The above result shows that we can "shorten" wires to connect initially distant quits on the lattice. The second equivalence is obtained multiplying $Z_{1} X_{2} Z_{3}$ by $\pm X_{2}$.
c) Consider now the 3×3 square cluster state

Show that measuring Z on the central node effectively disentangles it from the rest of the state, leaving the other quits in a graph state.

- The stalitister genuertars are:

$$
\mathcal{S}=\left\{X_{a} \prod_{i \sim a} Z_{i} \mid a \in \Gamma\right\}
$$

- They all commute with $2_{\text {CENTER }}$ aport fromm the stalsilirer generwtar with $X_{\text {center }}$.
- Apter measurements " m ", the stabilizer with $X_{\text {cen er }}$ is sabritate with $(-L)^{m} \cdot Z_{\text {CENTER }}$, While the otters remain the some apart from a phase $(-y)^{m}$ instar of $Z_{\text {cENTER }}$.

These two tricks can be generalized to show that, given a 2D cluster state, one can "cut out" any 2D regular grid and obtain the graph state needed to implement some circuit by single qubit measurements on appropriate sites. This justifies using the graph shape in the following point.
Finally, we turn to the CNOT gate. We can apply the CNOT gate in the MBQC scheme by using the following graph state.
d) Consider the following graph state:

Show that the following measurements implement a CNOT gate between the twoinput states $|\psi\rangle$ and $|\phi\rangle$ up to local pauli corrections:

Hint: There are two ways to prove this. Either, one explicitly calculates the output of the full circuit corresponding to the preparation and the measurements or one uses the stabilizer formalism where one only has to keep track how the stabilizers of the graph state change during the measurements. You might also have a look at https://arxiv.org/pdf/quant-ph/0301052.pdf.

Solution: Label the top qubits in the graph state excluding the input $1,2, \ldots, 6$ from left to right, the central one as 7 and the bottom ones $8, \ldots, 13$, again left to right. Label c and t the input control and target, respectively, qubits 6 and 13 are the corresponding output qubits:

To show that the pattern of measurements applies a $C N O T$ it is sufficient to specify its action on a basis of the 2-qubit inputs. Note that computational basis states $|j k\rangle$ on the inputs are stabilized by $\left\{(-1)^{j} Z_{c},(-1)^{k} Z_{t}\right\}$. One can see that

$$
\begin{equation*}
\operatorname{CNOT}\left((-1)^{j} Z_{c},(-1)^{k} Z_{t}\right) \operatorname{CNOT}=\left((-1)^{j} Z_{c},(-1)^{k} Z_{c} Z_{t}\right) . \tag{12}
\end{equation*}
$$

We will try and show that after the measurements the stabilizers of the output qubits are equal to these modulo single-qubit Pauli rotations.
From the previous points, the stabilizers of the graph state on all other qubits (before coupling with the input) are generated by

$$
\left\{\begin{array}{cl}
X_{1} Z_{2}, X_{2} Z_{1} Z_{3}, X_{3} Z_{2} Z_{4} Z_{7}, & X_{4} Z_{3} Z_{5}, X_{5} Z_{4} Z_{6}, X_{6} Z_{5}, \tag{13}\\
X_{7} Z_{3} Z_{10} & \\
X_{8} Z_{9}, X_{9} Z_{8} Z_{10}, X_{10} Z_{7} Z_{9} Z_{11}, & X_{11} Z_{10} Z_{12}, X_{12} Z_{11} Z_{13}, X_{13} Z_{12}
\end{array}\right\} .
$$

After we apply the two $C Z$ to couple in the input, the stabilizer generators (SG) of the overall state become

$$
\left\{\begin{array}{c}
(-1)^{j} Z_{c}, Z_{c} X_{1} Z_{2}, X_{2} Z_{1} Z_{3}, X_{3} Z_{2} Z_{4} Z_{7}, \tag{14}\\
X_{7} Z_{3} Z_{10} \\
(-1)^{k} Z_{t}, Z_{t} X_{8} Z_{9}, X_{9} Z_{8} Z_{5}, X_{5} Z_{4} Z_{6}, X_{10} Z_{7} Z_{9} Z_{11}, \\
X_{11} Z_{10} Z_{12}, X_{12} Z_{11} Z_{13}, X_{13} Z_{12}
\end{array}\right\} .
$$

For each measurement in the following we first redefine SG such that only one anticommutes with the measured operator and then we replace the anti-commuting operator with $\pm O$ where O is the measured observable.
We start by considering measurement of X_{c}, X_{t}. We multiply $Z_{c} X_{1} Z_{2}$ by $(-1)^{j} Z_{c}$ and $Z_{t} X_{8} Z_{9}$ by $(-1)^{k} Z_{t}$. Now only $(-1)^{j} Z_{c}$ anti-commutes with X_{c} and only $(-1)^{k} Z_{t}$ anti-commutes with X_{t}. Following the measurement, with outcomes m_{c}, m_{t}, we have SG

$$
\left\{\begin{array}{cc}
(-1)^{m_{c}} X_{c},(-1)^{j} X_{1} Z_{2}, X_{2} Z_{1} Z_{3}, X_{3} Z_{2} Z_{4} Z_{7}, & X_{4} Z_{3} Z_{5}, X_{5} Z_{4} Z_{6}, X_{6} Z_{5}, \tag{15}\\
X_{7} Z_{3} Z_{10} & \\
(-1)^{m_{t}} X_{t},(-1)^{k} X_{8} Z_{9}, X_{9} Z_{8} Z_{10}, X_{10} Z_{7} Z_{9} Z_{11}, & X_{11} Z_{10} Z_{12}, X_{12} Z_{11} Z_{13}, X_{13} Z_{12}
\end{array}\right\} .
$$

Note that X_{c} and X_{t} commute with all the remaining measurements, so they will no longer change in the following.
We now measure Y_{1}, X_{8}, with outcomes m_{1}, m_{8}. Repeating the above procedure we have SG

$$
\left\{\begin{array}{rrr}
(-1)^{m_{c}} X_{c},(-1)^{m_{1}} Y_{1},(-1)^{j} Y_{1} Y_{2} Z_{3}, X_{3} Z_{2} Z_{4} Z_{7}, & X_{4} Z_{3} Z_{5}, X_{5} Z_{4} Z_{6}, X_{6} Z_{5}, \tag{16}\\
X_{7} Z_{3} Z_{10} & \\
(-1)^{m_{t}} X_{t},(-1)^{m_{8}} Y_{8},(-1)^{k} Y_{8} Y_{9} Z_{10}, X_{10} Z_{7} Z_{9} Z_{11}, & X_{11} Z_{10} Z_{12}, X_{12} Z_{11} Z_{13}, X_{13} Z_{12}
\end{array}\right\}
$$

We can remove the dependency on Y_{1} and Y_{8} for the folllowing by multiplying the appropriate stabilizers by $(-1)^{m_{1}} Y_{1}$ or $(-1)^{m_{8}} Y_{8}$ obtaining

$$
\left\{\begin{array}{rrr}
(-1)^{m_{c}} X_{c},(-1)^{m_{1}} Y_{1},(-1)^{j}(-1)^{m_{1}} Y_{2} Z_{3}, X_{3} Z_{2} Z_{4} Z_{7}, & X_{4} Z_{3} Z_{5}, X_{5} Z_{4} Z_{6}, X_{6} Z_{5}, \tag{17}\\
X_{7} Z_{3} Z_{10} & \\
(-1)^{m_{t}} X_{t},(-1)^{m_{8}} Y_{8},(-1)^{k}(-1)^{m_{8}} Y_{9} Z_{10}, X_{10} Z_{7} Z_{9} Z_{11}, & X_{11} Z_{10} Z_{12}, X_{12} Z_{11} Z_{13}, X_{13} Z_{12}
\end{array}\right\}
$$

or, ditching the stabilizers that are no longer relevant

$$
\left\{\begin{array}{cc}
(-1)^{j+m_{1}} Y_{2} Z_{3}, X_{3} Z_{2} Z_{4} Z_{7}, & X_{4} Z_{3} Z_{5}, X_{5} Z_{4} Z_{6}, X_{6} Z_{5}, \tag{18}\\
X_{7} Z_{3} Z_{10} & \\
(-1)^{k+m_{8}} Y_{9} Z_{10}, & X_{10} Z_{7} Z_{9} Z_{11},
\end{array} X_{11} Z_{10} Z_{12}, X_{12} Z_{11} Z_{13}, X_{13} Z_{12}\right\}
$$

Measure now Y_{2} and X_{9}. We get

$$
\left\{\begin{array}{cl}
(-1)^{j+m_{1}} Y_{2} Z_{3},(-1)^{m_{2}} Y_{2}, & X_{4} Z_{3} Z_{5}, X_{5} Z_{4} Z_{6}, X_{6} Z_{5}, \tag{19}\\
X_{7} Z_{3} Z_{10} & \\
(-1)^{m_{9}} X_{9},(-1)^{k+m_{8}+1} Z_{7} X_{9} Y_{10} Z_{11}, & X_{11} Z_{10} Z_{12}, X_{12} Z_{11} Z_{13}, X_{13} Z_{12}
\end{array}\right\},
$$

or

$$
\left\{\begin{array}{cc}
(-1)^{j+m_{1}+m_{2}} Z_{3}, & X_{4} Z_{3} Z_{5}, X_{5} Z_{4} Z_{6}, X_{6} Z_{5}, \tag{20}\\
X_{7} Z_{3} Z_{10} & \\
(-1)^{k+m_{8}+m_{9}+1} Z_{7} Y_{10} Z_{11}, & X_{11} Z_{10} Z_{12}, X_{12} Z_{11} Z_{13}, X_{13} Z_{12}
\end{array}\right\}
$$

or

$$
\left\{\begin{array}{cl}
(-1)^{j+m_{1}+m_{2}} Z_{3}, & X_{4} Z_{3} Z_{5}, X_{5} Z_{4} Z_{6}, X_{6} Z_{5}, \tag{21}\\
X_{7} Z_{3} Z_{10} & \\
(-1)^{k+m_{8}+m_{9}} Z_{3} Y_{7} X_{10} Z_{11}, & X_{11} Z_{10} Z_{12}, X_{12} Z_{11} Z_{13}, X_{13} Z_{12}
\end{array}\right\}
$$

where we see that the bottom row picks up a dependency on the top one. Measure now Y_{7} :

$$
\left\{\begin{array}{cl}
(-1)^{j+m_{1}+m_{2}} Z_{3}, & X_{4} Z_{3} Z_{5}, X_{5} Z_{4} Z_{6}, X_{6} Z_{5} \tag{22}\\
(-1)^{m_{7}} Y_{7} & \\
(-1)^{k+m_{8}+m_{9}} Z_{3} Y_{7} X_{10} Z_{11}, & X_{11} Z_{10} Z_{12}, X_{12} Z_{11} Z_{13}, X_{13} Z_{12}
\end{array}\right\}
$$

or

$$
\left\{\begin{array}{cl}
(-1)^{j+m_{1}+m_{2}} Z_{3}, & X_{4} Z_{3} Z_{5}, X_{5} Z_{4} Z_{6}, X_{6} Z_{5}, \tag{23}\\
(-1)^{k+m_{7}+m_{8}+m_{9}} Z_{3} X_{10} Z_{11}, & X_{11} Z_{10} Z_{12}, X_{12} Z_{11} Z_{13}, X_{13} Z_{12}
\end{array}\right\}
$$

or

$$
\left\{\begin{align*}
(-1)^{j+m_{1}+m_{2}} Z_{3}, & (-1)^{j+m_{1}+m_{2}} X_{4} Z_{5}, X_{5} Z_{4} Z_{6}, X_{6} Z_{5}, \tag{24}\\
(-1)^{k+j+m_{1}+m_{2}+m_{7}+m_{8}+m_{9}} X_{10} Z_{11}, & X_{11} Z_{10} Z_{12}, X_{12} Z_{11} Z_{13}, X_{13} Z_{12}
\end{align*}\right\}
$$

or

$$
\left\{\begin{array}{cl}
(-1)^{j+m_{1}+m_{2}} Z_{3}, & (-1)^{j+m_{1}+m_{2}} X_{4} Z_{5}, X_{5} Z_{4} Z_{6}, X_{6} Z_{5}, \tag{25}\\
(-1)^{k+j+m_{1}+m_{2}+m_{7}+m_{8}+m_{9}} X_{10} Z_{11}, & (-1)^{k+j+m_{1}+m_{2}+m_{7}+m_{8}+m_{9}} Y_{10} Y_{11} Z_{12}, X_{12} Z_{11} Z_{13}, X_{13} Z_{12}
\end{array}\right\}
$$

Now we measure Y_{3} and Y_{10} to get SG

$$
\left\{\begin{array}{c}
(-1)^{m_{3}} Y_{3},(-1)^{j+m_{1}+m_{2}} X_{4} Z_{5}, X_{5} Z_{4} Z_{6}, X_{6} Z_{5} \tag{26}\\
(-1)^{m_{10}} Y_{10},(-1)^{k+j+m_{1}+m_{2}+m_{7}+m_{8}+m_{9}} Y_{10} Y_{11} Z_{12}, X_{12} Z_{11} Z_{13}, X_{13} Z_{12}
\end{array}\right\},
$$

or

$$
\left\{\begin{array}{c}
(-1)^{j+m_{1}+m_{2}} X_{4} Z_{5}, X_{5} Z_{4} Z_{6}, X_{6} Z_{5}, \tag{27}\\
(-1)^{k+j+m_{1}+m_{2}+m_{7}+m_{8}+m_{9}+m_{10}} Y_{11} Z_{12}, X_{12} Z_{11} Z_{13}, X_{13} Z_{12}
\end{array}\right\},
$$

or

$$
\left\{\begin{array}{c}
(-1)^{j+m_{1}+m_{2}} X_{4} Z_{5},(-1)^{j+m_{1}+m_{2}} Y_{4} Y_{5} Z_{6}, X_{6} Z_{5}, \tag{28}\\
(-1)^{k+j+m_{1}+m_{2}+m_{7}+m_{8}+m_{9}+m_{10}} Y_{11} Z_{12},(-1)^{k+j+m_{1}+m_{2}+m_{7}+m_{8}+m_{9}+m_{10}+1} X_{11} Y_{12} Z_{13}, X_{13} Z_{12}
\end{array}\right\} .
$$

Now measure Y_{4} and X_{11} to get

$$
\left\{\begin{array}{c}
(-1)^{m_{4}} Y_{4},(-1)^{j+m_{1}+m_{2}} Y_{4} Y_{5} Z_{6}, X_{6} Z_{5} \tag{29}\\
(-1)^{m_{11}} X_{11},(-1)^{k+j+m_{1}+m_{2}+m_{7}+m_{8}+m_{9}+m_{10}+1} X_{11} Y_{12} Z_{13}, X_{13} Z_{12}
\end{array}\right\}
$$

or

$$
\left\{\begin{array}{c}
(-1)^{j+m_{1}+m_{2}+m_{4}} Y_{5} Z_{6}, X_{6} Z_{5} \tag{30}\\
(-1)^{k+j+m_{1}+m_{2}+m_{7}+m_{8}+m_{9}+m_{10}+m_{11}+1} Y_{12} Z_{13}, X_{13} Z_{12}
\end{array}\right\}
$$

or

$$
\left\{\begin{array}{c}
(-1)^{j+m_{1}+m_{2}+m_{4}} Y_{5} Z_{6}, X_{6} Z_{5}, \tag{31}\\
(-1)^{k+j+m_{1}+m_{2}+m_{7}+m_{8}+m_{9}+m_{10}+m_{11}} X_{12} Y_{13}, X_{13} Z_{12}
\end{array}\right\},
$$

Finally, we need to measure Y_{5} and X_{12}, leading to

$$
\left\{\begin{array}{c}
(-1)^{j+m_{1}+m_{2}+m_{4}} Y_{5} Z_{6},(-1)^{m_{5}} Y_{5}, \tag{32}\\
(-1)^{k+j+m_{1}+m_{2}+m_{7}+m_{8}+m_{9}+m_{10}+m_{11}+1} Y_{12} Z_{13},(-1)^{m_{12}} X_{12}
\end{array}\right\}
$$

or

$$
\left\{\begin{array}{c}
(-1)^{j+m_{1}+m_{2}+m_{4}+m_{5}} Z_{6}, \tag{33}\\
(-1)^{k+j+m_{1}+m_{2}+m_{7}+m_{8}+m_{9}+m_{10}+m_{11}+m_{12}} Z_{13}
\end{array}\right\},
$$

or

$$
\left\{\begin{array}{c}
(-1)^{m_{1}+m_{2}+m_{4}+m_{5}}\left[(-1)^{j} Z_{6}\right], \tag{34}\\
(-1)^{m_{4}+m_{5}+m_{7}+m_{8}+m_{9}+m_{10}+m_{11}+m_{12}}\left[(-1)^{k} Z_{6} Z_{13}\right]
\end{array}\right\} .
$$

Remember now that $X Z X=-X X Z=-Z$ so we can remove the measurementdependent phases by applying single-qubit Pauli gates, namely $X^{m_{1}+m_{2}+m_{4}+m_{5}}$ to qubit 6 and $X^{m_{4}+m_{5}+m_{7}+m_{8}+m_{9}+m_{10}+m_{11}+m_{12}}$ to qubit 13.
After these corrective operations qubit 6 and 13 will be in the state whose SG read

$$
\begin{equation*}
\left\{(-1)^{j} Z_{6},(-1)^{k} Z_{6} Z_{13}\right\} \tag{35}
\end{equation*}
$$

which, according to Eq. 12 means their state is $C N O T|j\rangle_{6}|k\rangle_{13}$. This completes the proof.

Freie Universität Berlin
 Tutorials on Quantum Information Theory
 Winter term 2022/23
 Problem Sheet 11
 Measurement based quantum computing

J. Eisert, A. Townsend-Teague, A. Mele, A. Burchards, J. Denzler

1. Gate teleportation (12 points: $4+2+2+1+3$)

The fundamental primitive of MBQC is called gate teleportation, a simple version of which can be demonstrated in the following circuit:

Here, the entangling gate is a controlled- Z acting on a two-qubit state as $C Z|a b\rangle=$ $(-1)^{a b}|a b\rangle$.
a) Suppose that in the above circuit we measure the first register in the Z eigenbasis. Write the resulting state on the remaining subsystem in terms of the input state, depending on the measurement outcome m (you can neglect the normalization constant) ${ }^{1}$
b) Imagine taking the output state of the second wire, denoted $\left|\psi^{\prime}\left(m_{1}\right)\right\rangle$, following a measurement with outcome m_{1}, and feeding it back to a similar circuit, with measurement outcome m_{2}. Can you write the output state in terms of $|\psi\rangle$? Hint: you shouldn't need to do any calculation.
A key insight in MBQC is that if we want to repeat the above process n times we can prepare an entangled n-qubit resource state $|\Gamma\rangle$ beforehand, independent of the input state $|\psi\rangle .|\Gamma\rangle$ can be depicted as a one-dimensional strip of pair-wise entangled qubits, called a 1-d cluster state. We can then entangle $|\psi\rangle$ to the first qubit of the strip and subsequently only perform measurements (and possibly single-qubit Pauli corrections to remove the dependency of the output on measurement outcomes). Since $\langle Z= \pm 1| H=\langle X \pm 1|$, you can convince yourself that in circuit 1 after the $C Z$ the first qubit is effectively measured in the X basis. In the following point, we consider the H gates right before the computational basis measurement as "part of an X measurement process".
c) Draw a sketch of the circuit resulting from the n-fold repetition of the citcuit in Eq. 1 and write an expression for the resource state $|\Gamma\rangle$ (Hint: $C Z$ gates on different qubits all commute and isolate all measurements at the end of the circuit.)
d) Consider $R_{z}(\theta)=\exp \left(-\mathrm{i} \frac{\theta}{2} Z\right)$ and define $X_{\theta}=R_{z}(\theta)^{\dagger} X R_{z}(\theta)$. Show that

$$
\begin{equation*}
X_{\theta} R_{z}^{\dagger}(\theta) H|Z=m\rangle=(-1)^{m} R_{z}^{\dagger}(\theta) H|Z=m\rangle \tag{2}
\end{equation*}
$$

[^0]e) Consider the following circuit

where the measurement is in the computational basis. What is the observable that is effectively measured on the first qubit after the $C Z$? And what is the output state of the circuit, depending on the measurement outcome? Hint: the $R_{z}(\theta)$ commutes with $C Z$.

Since we get the Hadamard gate "for free" according to circuit 1, this result, together with the results in previous sheets shows us that a 1-d cluster state and single-qubit measurements are sufficient to perform an arbitrary single-qubit operation. The result is furthermore deterministic if we can operate corrective X operations depending on measurement outcomes.
2. Universal Quantum Computation with Cluster States 8 Points: $3+1+2+2$

In this exercise we consider a two dimensional cluster state where qubits are arranged in a rectangular grid

where nodes are qubit registers. This state can be obtained by preparing each qubit in the $|+\rangle$ state and applying $C Z$ operations between qubits connected by an edge. This general procedure can be used to produce states represented by any graph, which are simply called graph states. Cluster states, described by a rectangular grid, lie at the core of measurement based quantum computation (MBQC) because, given one such state, one can perform any quantum computation with single qubit measurements (in various bases), provided the rectangular patch is large enough. In the present exercise, we will sketch a proof of this fact. According to the previous exercise, it is sufficient to show that we can perform two-qubit gates. To this end, let us start with some definitions.

The stabilizer formalism is once again useful to compactly describe what is going on. The stabilizer generators of an arbitrary graph state $|\Gamma\rangle$, with Γ some graph, are given by

$$
\begin{equation*}
\mathcal{S}=\left\{X_{a} \prod_{i \sim a} Z_{i} \mid a \in \Gamma\right\} \tag{4}
\end{equation*}
$$

where $i \sim a$ denotes the set of qubits adjacent (connected) to qubit a. In paticular, it holds that $S_{a}|\Gamma\rangle=|\Gamma\rangle \forall S_{a} \in \mathcal{S}$.
a) Consider the graph state represented by

Write down the stabilizer generators of this state according to Eq. 4 and check that they indeed stabilize the state. Hint: write the stabilizer of the state by conjugating the ones of the $|+++\rangle$ state by the appropriate $C Z$ s.
We now use stabilizers to prove two useful tricks that allow us to easily modify the shape of a 2-d cluster state. Remember that when we have a stabilizer state with stabilizer generators $\left\{S_{j}\right\}$ and we want to measure some Pauli operator O, we can represent the action of a measurement as follows: if O commutes with all stabilizers, the measurement result is predetermined and the state is unchanged (being already an eigenstate of O. If O does not commute with some stabilizers, we can find a set of generators such that only one generator, say S_{1}, anti-commutes with O. This set can be found by multiplying some of the generators together. Following the measurement, we replace S_{1} with $(-1)^{m} O$, where m is the measurement outcome.
b) Consider again the graph state represented by

Show that measuring the second qubit in the X basis the stabilizers of the postmeasurement state are those of a two-qubit cluster, apart for a Hadamard on either the first or the third qubit and measurement-dependent phases. Hint: start by finding a set of generators such that only one anti-commutes with the measurement. Multiply then the post-measurement stabilizers to remove unwanted dependencies on operators acting on the measured qubit.

The above result shows that we can "shorten" wires to connect initially distant qubits on the lattice. The second equivalence is obtained multiplying $Z_{1} X_{2} Z_{3}$ by $\pm X_{2}$.
c) Consider now the 3×3 square cluster state

Show that measuring Z on the central node effectively disentangles it from the rest of the state, leaving the other qubits in a graph state.

These two tricks can be generalized to show that, given a 2D cluster state, one can "cut out" any 2D regular grid and obtain the graph state needed to implement some circuit by single qubit measurements on appropriate sites. This justifies using the graph shape in the following point.
Finally, we turn to the CNOT gate. We can apply the CNOT gate in the MBQC scheme by using the following graph state.
d) Consider the following graph state:

Show that the following measurements implement a CNOT gate between the twoinput states $|\psi\rangle$ and $|\phi\rangle$ up to local pauli corrections:

Hint: There are two ways to prove this. Either, one explicitly calculates the output of the full circuit corresponding to the preparation and the measurements or one uses the stabilizer formalism where one only has to keep track how the stabilizers of the graph state change during the measurements. You might also have a look at https://arxiv.org/pdf/quant-ph/0301052.pdf.

[^0]: ${ }^{1}$ In the context of MBQC, the measurements are often assumed to be "destructive", in the sense that the measured qubits are consumed by the measurement process and therefore not included in the description of what happens next. This reflects the physical reality where qubits might for example be encoded in travelling photons which are absorbed by a detector during the measurement.

