1. Gate teleportation (12 points: 4+2+42+1+3)

The fundamental primitive of MBQC is called gate teleportation, a simple version of
which can be demonstrated in the following circuit:
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Here, the entangling gate is a controlled-Z acting on a two-qubit state as C'Z |ab) =
(—=1)*[ab).

a) Suppose that in the above circuit we measure the first register in the Z eigenbasis.
Write the resulting state on the remaining subsystem in terms of the input state,

depending on the measurement outcome m (you can neglect the normalization
constant)
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b) Imagine taking the output state of the second wire, denoted |1’ (my)), following
a measurement with outcome my, and feeding it back to a similar circuit, with

measurement outcome msy. Can you write the output state in terms of [¢)? Hint:
you shouldn’t need to do any calculation.
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A key insight in MBQC is that if we want to repeat the above process n times we
can prepare an entangled n-qubit resource state |I') beforehand, independent of the
input state |¢). |I') can be depicted as a one-dimensional strip of pair-wise entangled
qubits, called a 1-d cluster state. We can then entangle [¢) to the first qubit of the
strip and subsequently only perform measurements (and possibly single-qubit Pauli
corrections to remove the dependency of the output on measurement outcomes). Since
(Z = £1| H = (X==% 1], you can convince yourself that in circuit|1|after the C'Z the first
qubit is effectively measured in the X basis. In the following point, we consider the H
gates right before the computational basis measurement as “part of an X measurement
process”.

c) Draw a sketch of the circuit resulting from the n-fold repetition of the citcuit
in Eq. 1/ and write an expression for the resource state |I') (Hint: C'Z gates on
different qubits all commute and isolate all measurements at the end of the circuit.)
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d) Consider R.(0) = exp(—i5Z) and define Xy = R.(0)' X R.(#). Show that
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) Consider the following circuit
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where the measurement is in the computational basis. What is the observable that
is effectively measured on the first qubit after the C'Z7 And what is the output
state of the circuit, depending on the measurement outcome? Hint: the R. (0)
commutes with CZ.
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Since we get the Hadamard gate “for free” according to circuit |1} this result, together
with the results in previous sheets shows us that a 1-d cluster state and single-qubit

measurements are sufficient to perform an arbitrary single-qubit operation. The result
is furthermore deterministic if we can operate corrective X operations depending on
measurement outcomes.



2. Universal Quantum Computation with Cluster States 8 Points: 3 + 1 + 2 + 2

In this exercise we consider a two dimensional cluster state where qubits are arranged
in a rectangular grid

where nodes are qubit registers. This state can be obtained by preparing each qubit in
the [+) state and applying C'Z operations between qubits connected by an edge. This
general procedure can be used to produce states represented by any graph, which are
simply called graph states. Cluster states, described by a rectangular grid, lie at the
core of measurement based quantum computation (MBQC) because, given one such
state, one can perform any quantum computation with single qubit measurements (in
various bases), provided the rectangular patch is large enough. In the present exercise,
we will sketch a proof of this fact. According to the previous exercise, it is sufficient
to show that we can perform two-qubit gates. To this end, let us start with some
definitions.

The stabilizer formalism is once again useful to compactly describe what is going on.
The stabilizer generators of an arbitrary graph state |I'), with I" some graph, are given
by

S={X.]][ % |acT}, (4)

where i ~ a denotes the set of qubits adjacent (connected) to qubit a. In paticular, it

holds that S, |I') = |I') VS, € S.

a) Consider the graph state represented by
1 2 >

Write down the stabilizer generators of this state according to Eq.[4|and check that
they indeed stabilize the state. Hint: write the stabilizer of the state by conjugating
the ones of the |+ + +) state by the appropriate C'Zs.
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We now use stabilizers to prove two useful tricks that allow us to easily modify the
shape of a 2-d cluster state. Remember that when we have a stabilizer state with
stabilizer generators {S;} and we want to measure some Pauli operator O, we can
represent the action of a measurement as follows: if O commutes with all stabilizers,
the measurement result is predetermined and the state is unchanged (being already an
eigenstate of O. If O does not commute with some stabilizers, we can find a set of
generators such that only one generator, say S, anti-commutes with O. This set can
be found by multiplying some of the generators together. Following the measurement,
we replace S; with (—1)™0O, where m is the measurement outcome.

b) Consider again the graph state represented by
1 2. >

Show that measuring the second qubit in the X basis the stabilizers of the post-
measurement state are those of a two-qubit cluster, apart for a Hadamard on either
the first or the third qubit and measurement-dependent phases. Hint: start by
finding a set of generators such that only one anti-commutes with the measurement.
Multiply then the post-measurement stabilizers to remove unwanted dependencies
on operators acting on the measured qubit.
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The above result shows that we can “shorten” wires to connect initially distant qubits
on the lattice. The second equivalence is obtained multiplying Z; X725 by £ Xos.

¢) Consider now the 3 x 3 square cluster state

Show that measuring Z on the central node effectively disentangles it from the
rest of the state, leaving the other qubits in a graph state.
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These two tricks can be generalized to show that, given a 2D cluster state, one can “cut
out” any 2D regular grid and obtain the graph state needed to implement some circuit
by single qubit measurements on appropriate sites. This justifies using the graph shape
in the following point.

Finally, we turn to the CNOT gate. We can apply the CNOT gate in the MBQC
scheme by using the following graph state.

d) Consider the following graph state:




Show that the following measurements implement a CNOT gate between the twoin-
put states |1) and |¢) up to local pauli corrections:
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Hint: There are two ways to prove this. Either, one explicitly calculates the output
of the full circuit corresponding to the preparation and the measurements or one
uses the stabilizer formalism where one only has to keep track how the stabilizers
of the graph state change during the measurements. You might also have a look at

hitps://arziv.orq/pdf/quant-ph/0301052. pdf.

Solution: Label the top qubits in the graph state excluding the input 1,2,...,6 from
left to right, the central one as 7 and the bottom ones 8, ..., 13, again left to right. Label
c and ¢ the input control and target, respectively, qubits 6 and 13 are the corresponding
output qubits:

c 1 2 3 4 5 6

o @ o T @ ® @
T 7

o @ @ @ @ ® @

t 8 9 10 11 12 13

To show that the pattern of measurements applies a C NOT it is sufficient to specify
its action on a basis of the 2-qubit inputs. Note that computational basis states |jk)

on the inputs are stabilized by {(—1)] Z,. (—1)" Zt}. One can see that

CNOT ((—1)]’ Z,, (—1)F Zt) CNOT = ((—1)j Z,, (—1)F Zth) . (12)

We will try and show that after the measurements the stabilizers of the output qubits
are equal to these modulo single-qubit Pauli rotations.

From the previous points, the stabilizers of the graph state on all other qubits (before
coupling with the input) are generated by

X1y, XoZZs, XgloZiyZiz, Xul3Zs, Xs5ZsZs, XeZs,
X770 . (13)
Xgly, XogZsgZhg, X1047Z9Z11, Xi1ZioZr2, Xi2Z112413, Xi3Zi2

After we apply the two C'Z to couple in the input, the stabilizer generators (SG) of the
overall state become

(—1Y Z., Z.X1Zs, XoZyZs, X3ZoZuZn, XuZsZs, XsZsZg, X¢Zs,
X7Z3Z10
(_1>k Zt» ZtX8Z97 X9ZSZm, X10Z7Z9ZH; X11210Z127 X12Z11Z137 XIBZH
(14)



For each measurement in the following we first redefine SG such that only one anti-
commutes with the measured operator and then we replace the anti-commuting oper-
ator with 0 where O is the measured observable.

We start by considering measurement Qf X, X;. We multiply Z.X, 7, by (—1)j Z. and
Z,XsZy by (=1)* Z,. Now only (—1)’ Z, anti-commutes with X, and only (—1)* Z,
anti-commutes with X;. Following the measurement, with outcomes m., m;, we have

SG

(=0 Xe, (1) X1Zs, XoZiZs, X3ZoZsZn, XuZsZs, XsZaZs, XeZs,
X7Z320
(_1)mtXtu <_1)kXSZ97 XQZSZI()u X10Z7Z9ZHu X11210Z127 X12Z11Z137 XIBZIQ

(15)
Note that X. and X; commute with all the remaining measurements, so they will no
longer change in the following.

We now measure Y7, Xg, with outcomes m;, mg. Repeating the above procedure we
have SG

(=)™ X, (=1)™Yy, (=1)V1YalZs, X3Z9Z4Z7, XaZ3Zs, XsZsZs, XeZs,
RCYAVAN
(=)™ X, (—1)™Ys, (—1)FYsYeZi0, X10Z729711, X11710212, X12Z11713, X13Z12

(16)

We can remove the dependency on Y; and Yg for the folllowing by multiplying the
appropriate stabilizers by(—1)"1Y] or (—1)™8Y3 obtaining

(=)™ X,, (—=1)™Yy, (1) (=1)"YaZs, X3297477, XuyZ3Z5, X5Z4Zs, XeZs,

X7Z3210
(=)™ Xy, (=1)™Ys, (=1)"(=1)"YoZ10, X10Z1Z9Z11, X11Z10Z12, X12Z11713, X132
(17)
or, ditching the stabilizers that are no longer relevant
(=1)™Y3Zs, X3ZoZsZin, XuZsZs, X5ZsZs, X6Zs,
XrZ374 , (18)

(=D)FmsYy Zyg, X10Z129Z11,  Xu1ZrZio, X12Z11213, X13Z1s
Measure now Y5 and Xy. We get

(=1)HtMYyZs, (—=1)"2Ys, XyZ3Zs, Xs5Z4Zs, X6Zs,
R CYAVAT) , (19)
(=)™ Xy, (—=1)Mms T2 XoY10Z11,  X11Z107Z12, X12Z11713, X13212

or
(=1)itmtme g7y X, 7375, XsZyZs, XeZs,
XrZ3Z0 (20)
(=1)ktmstmotl 7.y 701, Xi1ZwZiz, X12Z11713, X13Z19
or

(=1)itmtme 7o X, 7375, XsZyZs, X6Zs,
X232 (21)
(_1)k+m8+m923}/77X102117 X11Z102127 X12211Z137 X13212

6



where we see that the bottom row picks up a dependency on the top one. Measure now
Y7I

(—1)yytmatma 7o Xy ZsZs, XsZyZs, XeZs,
(—=1)™7Y7 , (22)
(=1)rtmstmo 7.2 X 10211, X11Z10Z12, X19211713, X13212

or
(=1)yirmatme 7o Xy ZsZs, XsZyZs, XeZs,
: (23)
(—1)ktmrtmstmo 7. X0 711, X11Z10Z12, X12Z11713, X13Z12
or
(—1)j+m1+m2Z3, (—1)j+m1+m2X4Z5, X5y Zg, XeZs,
, (24)
(—1)kHatmatmatmetmstmo X, 07y X1 210212, X12711713, X13Z12

or

(=1)itmatmazy o (_1)itmtme X, 700 X 7476, XeZs,

k+3 k+j
(_1) +]+m1+m2+m7+m8+m9X10211, (_1) +j+m1+m2+m7+m8+m9YmY11212, X12211Z137 X13Z12

(25)
Now we measure Y3 and Yj, to get SG
(=1)maYs, (—1)/tmtme X, 7 XsZ4Zg, XeZs,
, , (26)
(—1)m0Yy,, (—1)kritmutmatmetmstmoy,) W, 7,0 X19211 713, X13712
or
(=1)tmatme X, 7 X5 72,76, XeZs,
, (27)
(—1)kFgtmatmatmrtmstmotmioy,) 710 - X1 7117213, X13Z12
or

(_1)j+m1+m2X4Z5’ (_1)3’-1—77114-77121/41/:5Z67 XGZB,

(_1)k+j+m1+m2+m7+ms+mg+m1oY'HZH’ (_1)k+j+m1+m2+m7+m8+m9+m10+1X11Y'12Z13’ X13Z12

(28)

Now measure Y, and X, to get

(=1)™Yy, (=1)/tmtmY, Y576, XeZs,
, (29)
(_1>m11X117 (_1)k+j+m1+m2+m7+m8+m9+m10+1X11}/’12213’ X13212
or
(—1)itmatmatmay; 7. X6 Zs,

) (30)

(_1)k+j+m1+m2+m7+m8+m9+m10+m11+1}/12Z137 X13Zu



or

(=1)itmitmetmay, 7o X Zs,

: (31)
(_1)k+j+m1+m2+m7+m8+m9+m10+m11X12Y'13’ X13Z12
Finally, we need to measure Y5 and X, leading to
(_1)j+m1+m2+m4y526, (_1)7715}/5’
(32)
(_1)kz+j+m1+m2+m7+ms+m9+m10+m11+1Y12ZB, (_1)m12X12
or
(_1)j+m1+m2+m4+m5 ZG;
, (33)
__1\k+j+mi+mao+mr+ms+mo+mio+mii+miz
(—1) Zhs
or
(—1)matmatmatms [(1)] 7],
(34)
(_1)m4+m5+m7+m8+m9+m10+m11+m12 [(_1)kZGZl3]
Remember now that XZX = —XXZ = —Z so we can remove the measurement-

dependent phases by applying single-qubit Pauli gates, namely X ™t Htm2tmatms ¢4 qubit
6 and X matmst+mrtmg+motmiotmiitmiz ¢ qubit 13.

After these corrective operations qubit 6 and 13 will be in the state whose SG read
{(=1YZs, (—1)"ZsZ13} (35)

which, according to Eq. means their state is CNOT |j)q |k),5. This completes the
proof.
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1. Gate teleportation (12 points: 4+2+2+41+3)

The fundamental primitive of MBQC is called gate teleportation, a simple version of
which can be demonstrated in the following circuit:

[¢) —— m (1)

0) —H

Here, the entangling gate is a controlled-Z acting on a two-qubit state as C'Z |ab) =
(—1)%|ab).
a) Suppose that in the above circuit we measure the first register in the Z eigenbasis.

Write the resulting state on the remaining subsystem in terms of the input state,
depending on the measurement outcome m (you can neglect the normalization

constant

b) Imagine taking the output state of the second wire, denoted |¢’ (m;)), following
a measurement with outcome mq, and feeding it back to a similar circuit, with
measurement outcome my. Can you write the output state in terms of |1)? Hint:
you shouldn’t need to do any calculation.

A key insight in MBQC is that if we want to repeat the above process n times we
can prepare an entangled n-qubit resource state |I') beforehand, independent of the
input state [¢). |I') can be depicted as a one-dimensional strip of pair-wise entangled
qubits, called a 1-d cluster state. We can then entangle |¢)) to the first qubit of the
strip and subsequently only perform measurements (and possibly single-qubit Pauli
corrections to remove the dependency of the output on measurement outcomes). Since
(Z = £1| H = (X = 1|, you can convince yourself that in circuit[L]after the CZ the first
qubit is effectively measured in the X basis. In the following point, we consider the H
gates right before the computational basis measurement as “part of an X measurement
process”.

c) Draw a sketch of the circuit resulting from the n-fold repetition of the citcuit
in Eq. |1f and write an expression for the resource state |I') (Hint: CZ gates on
different qubits all commute and isolate all measurements at the end of the circuit.)

d) Consider R.(6) = exp(—i%Z) and define Xy = R.(6)' X R.(f). Show that

XoRL(O)H|Z =m) = (—1)"RL(0) H|Z =m). (2)

In the context of MBQC, the measurements are often assumed to be “destructive”, in the sense that the measured
qubits are consumed by the measurement process and therefore not included in the description of what happens
next. This reflects the physical reality where qubits might for example be encoded in travelling photons which
are absorbed by a detector during the measurement.



e) Consider the following circuit

[) R.(0) m (3)

o) {1}

where the measurement is in the computational basis. What is the observable that
is effectively measured on the first qubit after the CZ7 And what is the output
state of the circuit, depending on the measurement outcome? Hint: the R, (0)
commutes with C'Z.

Since we get the Hadamard gate “for free” according to circuit |1} this result, together
with the results in previous sheets shows us that a 1-d cluster state and single-qubit
measurements are sufficient to perform an arbitrary single-qubit operation. The result
is furthermore deterministic if we can operate corrective X operations depending on
measurement outcomes.

. Universal Quantum Computation with Cluster States 8 Points: 3 + 1 + 2 + 2

In this exercise we consider a two dimensional cluster state where qubits are arranged
in a rectangular grid

where nodes are qubit registers. This state can be obtained by preparing each qubit in
the |+) state and applying C'Z operations between qubits connected by an edge. This
general procedure can be used to produce states represented by any graph, which are
simply called graph states. Cluster states, described by a rectangular grid, lie at the
core of measurement based quantum computation (MBQC) because, given one such
state, one can perform any quantum computation with single qubit measurements (in
various bases), provided the rectangular patch is large enough. In the present exercise,
we will sketch a proof of this fact. According to the previous exercise, it is sufficient
to show that we can perform two-qubit gates. To this end, let us start with some
definitions.

The stabilizer formalism is once again useful to compactly describe what is going on.
The stabilizer generators of an arbitrary graph state |I'), with I some graph, are given
by

Sz{XaHZZ-]aEP}, (4)

where i ~ a denotes the set of qubits adjacent (connected) to qubit a. In paticular, it
holds that S, |I') = |I") VS, € S.



a) Consider the graph state represented by
1 2 Y

Write down the stabilizer generators of this state according to Eq.[4{and check that
they indeed stabilize the state. Hint: write the stabilizer of the state by conjugating
the ones of the |+ + +) state by the appropriate CZs.

We now use stabilizers to prove two useful tricks that allow us to easily modify the
shape of a 2-d cluster state. Remember that when we have a stabilizer state with
stabilizer generators {S;} and we want to measure some Pauli operator O, we can
represent the action of a measurement as follows: if O commutes with all stabilizers,
the measurement result is predetermined and the state is unchanged (being already an
eigenstate of O. If O does not commute with some stabilizers, we can find a set of
generators such that only one generator, say 57, anti-commutes with O. This set can
be found by multiplying some of the generators together. Following the measurement,
we replace S; with (—1)"O, where m is the measurement outcome.

b) Consider again the graph state represented by
1 2 3

Show that measuring the second qubit in the X basis the stabilizers of the post-
measurement state are those of a two-qubit cluster, apart for a Hadamard on either
the first or the third qubit and measurement-dependent phases. Hint: start by
finding a set of generators such that only one anti-commutes with the measurement.
Multiply then the post-measurement stabilizers to remove unwanted dependencies
on operators acting on the measured qubit.

The above result shows that we can “shorten” wires to connect initially distant qubits
on the lattice. The second equivalence is obtained multiplying Z; X575 by +Xo.

c) Consider now the 3 x 3 square cluster state

4

Show that measuring Z on the central node effectively disentangles it from the
rest of the state, leaving the other qubits in a graph state.

These two tricks can be generalized to show that, given a 2D cluster state, one can “cut
out” any 2D regular grid and obtain the graph state needed to implement some circuit
by single qubit measurements on appropriate sites. This justifies using the graph shape
in the following point.

Finally, we turn to the CNOT gate. We can apply the CNOT gate in the MBQC
scheme by using the following graph state.

d) Consider the following graph state:



Show that the following measurements implement a CNOT gate between the twoin-
put states |1) and |¢) up to local pauli corrections:
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Hint: There are two ways to prove this. Either, one explicitly calculates the output
of the full circuit corresponding to the preparation and the measurements or one
uses the stabilizer formalism where one only has to keep track how the stabilizers
of the graph state change during the measurements. You might also have a look at
https: //arziv.org/pdf/quant-ph/0301052. pdf.



