1. Constructing entanglement witness from the partial transpose (10 Points:
14+24-2424+2+1)
In the lecture, we saw that every separable bi-partite quantum state has a positive
partial transpose, which means that the positivity is an entanglement criterion. First,
we show that this criterion is valid.

a) Show that for an arbitrary separable bi-partite quantum state p = > . p;(p4i®pgi),
all eigenvalues of p’4 are greater than or equal to 0, i.e., p’4 > 0.
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In general, the opposite direction is not true. However, if we restrict a quantum state
to a pure state, the opposite is also true as the following.

b) Show that a bi-partite pure state |1)) € C? ® C¢ is separable if it has a positive
partial transpose.

Hint: Prove the contraposition: if |¢) is entangled, (|1) (1|)*4 has at least one
negative eigenvalue. To this end, use Schmidt decomposition.
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Recall that an entanglement witness is an observable W with the following conditions:
(i) Tr(Wg) > 0 for all separable states o and (ii) there exists an entangled state p’
satisfying Tr(Wp) < 0.

c¢) Consider an entangled state p. Let |u) be an eigenvector of p’4 whose eigenvalue
is negative. Then show that W = (|u) (u])™ is an entanglement witness and |p)
is an entangled state.
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As an application of this witness, we consider the following setting. In our (fictitious)
lab, we are trying to prepare a two-qubit state |1) € H = C?* ® C*>. We use a simple
mode for what is actually happening in the lab, namely that we prepare a state with
some noise

p(p) = plY)Xy]+ (1 —p)%

Our goal is to have an observable witness that decides whether p(p) is entangled or not.
To this end, we will use the fact that for two-qubits system there exist no entangled.
positive partial transpose (PPT) states. Therefore, the partial transpose T will always
detect entanglement of p(p).

d) Assume [¢)) = a|01) .5, +b|10) ,5. Calculate eigenvalues of p(p)’2, and determine
the values of p depending on a, b such that p(p) is entangled.

Hint: Use the fact that p(p) is entangled if and only if p(p)™® # 0.
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e) Use the eigenvector corresponding to a negative eigenvalue of (p(p))’® in order to
derive an entanglement witness W for p(p).
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f) Show that, in fact, the witness VW detects all entangled states of the form p(p).
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2. Detecting Eve. One key feature of the BB'84 protocol for quantum key distribution
is that Alice and Bob are able to estimate how many bits were corrupted by the channel
or Eve by comparing their results on a subset.

In this excercise, we will prove this statement. More precisely, let Alice and Bob
randomly select n of their 2n bits check for errors. We denote the number of errors in
the test bits by ey and the number of errors in the remaining, untested n bits by ep.
Then, for any 6 > 0

p=Pr{er <dn AN eg > (0 +¢€)} <exp [—(’)(nez)] . (1)

In other words, the probability that the number of errors in the unknown bits deviati-
ates by more than e from the observed fraction ¢ in the test bits gets very small large
n and e.

We denote the total number of errors that occur in the 2n bits by un.
a) Argue that

() ()

Solution: Ok, we are given a bit strings of length 2n. This string can be parti-
tioned into two strings of equal size in (2,:‘) ways. The number of ways in which
we end up with one substring containing exactly ¢ of the pn corrupted bits is
(“l") (2”_“"). Therefore, the probability of getting up to dn corrupted bits is

k2 n—i

- () 2 () =C) GG o
<4

where we have used that i/n <6 = 4§ —
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We will need a few identities to massage this term. To this end, let H(p) = —plog, p —
(1 —p)logy(1 — p) be the binary entropy.

b) Show that
nH(p) + O(logy n) < log, (p’”;) < nH(p) + O(log, ). @
Hint: Recall Stirling’s bound v/27y/nn"e™™ < n! < ey/nn"e™".

Solution: Setting g =1 — p,

"y _n eV ()
( ) (np)!(ng)! = 2mny/pg (22)™ ()™ (5)
- ¢ p g, (6)

21 /npq

np

Taking the logarithm yields

n e 1
log, (np> < —nlplog, p+qlog, ¢]+log, 575 log, npq = nH (p)+O(logyn). (7)

The lower bound follows analogously and only differs in the constant offset.

Furthermore, one can derive the following simple bound for the binary entropy H(x) <

1-2 (x — %)2 (If you are curious, it is a good excercise to use Taylor’s theorem

including an estimate for the remainder to derive this bound.)

Solution: The first derivatives of H are

H'(z) = —logy(z) + logy(1 — ) (8)
1 1
HII — _ o
(z) zIn(2)  (1—2)n(2) (9)
1 1
H" (z) = - . 1
()= @ ~ T2 (10)
The maximum of H(x) is at Tpax = % with H(Zmax) = 1 and H" (pax) = _1nl(lg) > 4.
Thus, by Taylor’s theorem
2 1\? 1\?
e <1— _ =
H(z)=1 03 <x 2) +R(x)<1-2 (x 2> + R(x), (11)

with R(z) = $H"(€) (x — %)3 for suitable £ € (3,z) for z > $ or € € (z,3) for z < 1.
1

The third derivative can be written as H"”' () = —2%. Thus, as = and £ are

always on the same side of % we always end up with an overall minus sign. So since

R(z) <0 for all z, it can be dropped to arrive at the bound.

c¢) Plug everything together and show that p < exp [—~O(ne?)].
Solution: The solution of (b) implies that up to log-factors

(b”> SPLAUCDE (12)

an



Thus, up to log-terms in n

log,p < —2nH(1/2) + pnH (/) + (2 — p)nH (g)

§_2n+w<1_2<%—%)2>+(2—u)n<1—2<%_%>2>

1 1
= —2n+ un — —pn(e/p)* 4+ 2n — pn — 57162/(2 — 1)

2

1 (1 1 >2
=—-n|—+-—]c¢€
2 \p 2—p

(18)






