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Freie Universität Berlin
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Problem Sheet 6
Operator Properties and LOCC

J. Eisert, A. Townsend-Teague, A. Mele, A. Burchards, J. Denzler

1. Operator Properties

In this exercise we take a short break from following the main content covered in
the lecture and return back to proving some simple but useful identities for operators
on complex Hilbert spaces. In particular, we explore the two important facts that
operators are completely specified by their diagonal elements in all bases as well as the
power of the square root representation for positive operators.

a) Interestingly in a complex inner product space an operator is fully specified when
its diagonal elements in all bases are known. Show this by verifying the identity

h |A |�i =
1

4

3X

k=0

i
k
⌦
 + i

k
�
��A

�� + i
k
�
↵
. (1)

b) Use the previous identity to show that 8 : h |A | i = h |B | i =) A = B.

c) Use this to show that the class of operators A 2 L(H) which preserve the inner
product is exactly the set of unitaries. I.e. if 8 ,� : hA |A�i = h |�i then A is
unitary and vice versa.

d) A useful property of positive operators is the following: If A is a positive operator
then there exists a unique positive operator A

1/2 which satisfies A
1/2

A
1/2 = A.

Moreover this operator satisfies [A,H] = 0 =) [A1/2
, H] = 0. Use this to show

that the product of two positive operators is positive if and only if they commute.
(hint: Also show that A � B ^ B � A =) A = B).

e) Even though the product of two positive operators is not necessarily positive, the
following holds A � 0 ^B � 0 =) TrAB � 0. Show this.

2. Local operations and classical communication (LOCC).

At the heart of entanglement theory lies the notion of LOCC. To see why, imagine
two parties that are a large distance apart from each other, say, Alice is in Berlin and
Bob in New York. While they may obtain access to shared entanglement from a third
party, it is unreasonable to assume that they are able to perform global operations on
the state they share. On the other hand, it is perfectly conceivable that they transmit
classical messages, for example, to communicate measurement results.

The goal of this problem is to show that if Alice and Bob are in far away labs, and share
a state, any measurement on Alice’s part of the state can be simulated as follows: Bob
performs a measurement on his side and communicates the result to Alice, who performs
a local unitary tranformation. This can be proven for POVMs, but for simplicity we
will restrict ourselves to projective measurements.

Consider a bipartite state | iAB with Schmidt decomposition | iAB =
P

i

p
�i |aii |biiand

a projective measurement ⇧ = {⇧A
i }i acting on Alice’s Hilbert space.

a) Expand ⇧A
i in the Schmidt basis and define a projective measurement � = {�B

i }i

on Bob’s system such that the probability p
B
k that Bob observes result k when

measuring � is the same as the probability p
A
k that Alice observes result k when

measuring ⇧.
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b) Determine the post measurement states
���A

j

↵
after Alice measures ⇧ and obtains

result j, and
���B

j

↵
after Bob measures � and obtains result j. (both of these states

are defined on the whole Hilbert space AB, the superscripts serve to identify who
performed the measurement).

c) Show that
���A

j

↵
and

���B
j

↵
are equivalent up to local unitary transformations.

d) Describe the LOCC protocol.
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