



































































































































A
We need to verify that pro

Ptp this is actually impliedApro

un HiME
al ftp.ofhzeignglugaf.pt

P pt o Pest

P I Piti 70
PROOF

Pro CE sul pit 70 KIP

























































































































capite è ricatti Fa

E is adensitymatrix
Pi o

tn p I

proff

tr p È pi triti È Pit 1

Ti densitymatrix

Pa D E

In 1

770

Proff

417147 4177147 I 4117 GIN 11MMIE
TITI TETI

CHI MI 4770 4147 170

An a e

Proof

Meald 01 TE 210740107401 Linate La A

me
Etienne tetani

a d

































































































































So il PEP Eldest s t 7 10741

tra tarasco il ditemi
i

PESI NITSCH
indecompyteigenata

a Està
PIP eigenvalue

Raven since trip 1 è di
and since Pro di 20

pettini in a convex combination oppurestates

We have
Pègffeinhiettino

pal è pregi _È dio è the Laila o et I
i did MIA CHIA

HI è inffiachilia



















































































































gia VIII CHIA HALEY
LEIBNITZ RULE

rareformallyoneshouldtakematrix element

GIA17 a finita il in
LEIBNITZRULE

pie did fittizia Hirate

iI dio Ansa matti
HIRED

i È di e H MAI i H pia

PIÈè in mala

piè ittactil 1 È di lui al

tu pa È li infinita è di






































































































































Ppurestata tn p4 1

f purestategg file that ti
it Viti dio

ta pi e 1

proof

tipi II fette
indi I diet dito te 1

tipi I
proo F I

K pa e te Y teff tipo ttpt

alti li FRA 17 I ftp
LAUSHY I

WARTZ.int
pe they
Proof

I III E

































































































Elp in stato è turno
InfraD 1

Tra f 70
proof

Pi FPIAfffia
io ia.io plTa Jr JaTal

L'art Itàlia i Cia iri

Egidia
i P Tata Iia io sa I

trip III KID P Ha DÌ
È

haha Sik

E
io KIP Ta k Ia Tal

al tre ph E
io KIP sa Katia tal

I ftp.kptt.ME
o tra a so I

















































































































A Tap e

proof

tra D IIII io KIP Tak ideal

tal tra pl II FI santella te p 1

F pa la A T
è Lia intatta lia io sassi da I

è Lia ialPabitaTa Ta Iia io sassi da A

EI Lia intattaJalDalia7_TfliaiB7L1a5BlOaIDFCJaiTBl0a0Ialia.iB Talaia Sia

Taci ftp.lailalh lailBKsiIid Sia

è Lia intatta T.fi Jal0a

ÉEIE
TE F Pa 0












































































































































For absurdum

Foa Talpa 1474
TrentPan Pa Fa Pas is pure

But Tra Pas tra Ira had in not pure I
PROOF

tra Iran ha B IIIb 15,5 Kik 15,17 Kl Ss

E F TI Pa

Tr p Tuffy I I I Pa in Notpure
Irinapoint

Kaftan II A KI 100 B1017 8110 81117 ECON PELOSI ECHI STADIOIN

I LO 100 B1017 8120 81117 ECON SECOLI ECHI SIA 1 1017

I Il 100 B1017 8120 81117 ECON SECOLI ECHI SCALDA 1



































































































































CIO VIDIC COI SILLI

Bio 8117 p Col S 11

121210401 1812117 4 28 INCH 8 É IL Col

BI IO Col 181 177 11 7 BEACH SE 11740

fa BI tosco fa 181 DEI METASTASI PASSIM

LITES

1814181

Talal fa BI lo col 817181417Al METASTASI fa SPINA

È E E 11711

LeGif

tratta III attratti.es D III ate incisi

È ti lasci















































































































Ifan È di lisci E IF É uscii

Weshared have min d da de and is 1g

Ps 1,47441 I puri E tipi I

1 ti a It I ge zlyoati con la non zero

Chessa È ti lasci






































































































































S CAsBe CA Be LA 327 A2827

I PIANI Beh AHBEH AHbah Aaba

151 E ftp.lAsIYBIH AHBEH AHBEH AHBah

E MalAdil Beh AnBari AHbah AHbah Int




































































































MAIALI BI Bari Alife Bari 1

E
CASE 7

I
2

ses Bari p

Il 2 Ashbery

fase
me gpg

me ad ed i laser
age

BEH1

Syme talpa Ba tipa B tripAraba talpa b

jHlAe BeH7tLHIAeOB.HD HIA2 BID.LHIA BED

TAYI 0 410147

A Be 117È rete x 2 147 fatti tali MIA Belt fa
102117LE1107 1017 1 orthog.to117
X XIN IN HIS O






































































































































As BaH7

EIIA.EgItI E
147 in

HAI BAM E CHI EH È

A Bel47 2 iHfEISDtEH.z
XIp7 Na7 at.Ao IN

202147 1147 CH'MÈIÈ
HA BelD È

Arabe 47effe 21,2 in Elsa_EH

HA Bel47 É

Sam LUI AMIHDtLHIAI B.HD HIA2 BID.HIAe BED

2TE

San 2 but before we proved that 151 2 for a

local realistichidden variablesetting

Quantum Mech doesnotsatisfy local realistichidden variabletheoryassumption



















































































































Same te pas Ba tripAs B tripAraba talpa b

TE
verify

In this case sane 2 the inequality 1542 is notviolated

The difference to the previous point is that while nowthestate
in sePARABLE before We had entanglement

E 7only classical quantum
correlation

correlation
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Tutorials on Quantum Information Theory
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Problem Sheet 1
Density matrices and Bell experiments

J. Eisert, A. Townsend-Teague, A. Mele, A. Burchards, J. Denzler

1. Density matrix formulation of Quantum mechanics The basic ingredients of
quantum mechanics are: states, observables and dynamics. In the density matrix for-

mulation we can start from the following (incomplete) postulates:

I.) Each physical system is associated with a Hilbert space (H, h·|·i). The (mixed)

state of a quantum system is described by a non-negative, self-adjoint linear
operator with unit trace, i.e. an element of D := {⇢ 2 L(H) | ⇢ = ⇢†, ⇢ �

0, Tr ⇢ = 1}. The elements of D are commonly called density matrices.
Remark: In quantum information theory, it will be su�cient to consider finite

dimensional Hilbert spaces most of the time. A finite dimensional Hilbert space

is simply a vector space. In infinite dimension there are more subtleties, but

these do not concern us.

II.) Observables are represented by Hermitian operators on H. The expectation
value of an observable A in the state ⇢ is given by hAi⇢ = Tr(A⇢).

III.) The time-evolution of the state of a quantum system satisfies

d⇢

dt
= �i[H, ⇢],

where H is the observable associated to the total energy of the system.

a) Show that if ⇢ is a convex combination of density matrices �i 2 D, i.e. ⇢ =PM
i=1 pi�i, with probabilities

P
i pi = 1, then ⇢ is a density matrix.

Let us get some geometrical intuition about the set of quantum states.

b) Show that the set P = {⇡ 2 L(H) | ⇡ = ⇡†, ⇡2 = ⇡, rank ⇡ = 1} of orthogonal
projectors onto one-dimensional subspaces of H is a subset of D. The set P is
called set of pure-states.

c) Show that every density matrix can be written as convex combination of pure
states.

d) Starting from the Schroedinger equation for pure states, i.e.

d

dt
| i = �iH| i (1)

derive the corresponding evolution equation for density matrices

d⇢

dt
= �i[H, ⇢]. (2)

Hint: start by proving this for ⇢ = ⇡ a pure state, then use linearity.

e) Define the purity function as pur(⇢) := Tr(⇢2). Show that pur(⇢) = 1 if and only if
⇢ is pure and that 1

d  pur(⇢)  1, where d is the dimension of the Hilbert space.
What state attains the lower bound? Argue that pur(⇢) := Tr(⇢2) is a measure for
the ‘purity’ of a state ⇢ 2 D. Hint: for the lower bound, recall the Cauchy Schwarz

inequality for the Hilbert Schmidt inner product: Tr(AB†)2  Tr(AA†) Tr(BB†).
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Next, we will see that the generalization to density matrices is a necessary one if we want
to study subsystems. Consider a bipartite system AB with Hilbert spaceH = CdA⌦CdB

and an observable OA⌦1B. We will see that the restriction to a subsystem is described
by the partial trace: For a a linear operator M : H ! H this is defined as

TrB(M) =
dBX

j=1

(1A ⌦ hj|B)M(1A ⌦ |jiB), (3)

where {|jiB} is an arbitrary orthonormal basis (ONB) for CdB (as with the trace this
definition is independent of the choice of ONB).

f) Show that the partial trace of a state (density operator) is a valid state on the
subsystem A.

g) Prove that for any state ⇢AB we have

Tr(⇢ABOA ⌦ 1B) = Tr(TrB(⇢AB)OA). (4)

for all observables OA. That is, the partial trace of the combined state AB is the
reduced state on the subsystem A. This is useful because when computing the
expectation values of local observables one can be concerned only with the part of
the system on which the observable acts.

h) Reduced states of pure states are not necessarily pure. Let dA = dB =: d. Show
that there is no pure state | ih |A acting on A that satisfies

Tr(⇢ABOA ⌦ 1B) = Tr(| i h |A OA) (5)

for ⇢AB = |⌦ABih⌦AB| and all observables OA. Here,

|⌦i := d�
1
2

dX

j=1

|j, ji

is the maximally entangled state.

2. Partial Traces and the Schmidt Decomposition

We consider a system with Hilbert space H = C2
⌦C2. Consider the most general pure

state | i = ↵ |00i+ � |01i+ � |10i+ � |11i .

a) Calculate the partial trace Tr2 | ih | of its associated density matrix in the basis
{|0ih0| , |0ih1| , |1ih0| , |1ih1|}.

b) Let now  = 1p
2
(|00i + |11i), i.e. a Bell state. Use your previous result to show

that Tr2 | ih | is the maximally mixed state.

c) Let now | i 2 H ⇠= Cd1 ⌦Cd2 be an arbitrary bipartite pure state. All such states
have a Schmidt decomposition | i =

Pmin(d1,d2)
i=1

p
�i|ii1|ii2, with non-negative real

Schmidt values �i 2 R+
0 and the sets {|ii1}, {|ii2} orthonormal bases of Cd1 and Cd2

respectively. Calculate Tr2 | ih | in terms of the Schmidt coe�cients and basis
{|ii1}.

d) What condition do the Schmidt coe�cients have to satisfy in order for Tr2 | ih |
to be maximally mixed?

e) Show that if Tr2 | ih | is a pure state only a single Schmidt coe�cient can be
nonzero.
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3. Local and realistic theories

The violation of so-called Bell inequalities by quantum mechanics lies at the (or rather,
a) heart of the way in which quantum information is distinct from classical information.
The question we want to answer in this problem is the following: can the randomness
of quantum mechanics be explained simply by ignorance of the exact initial state?

To this end we consider an EPR-type setting, in which two parties, Alice and Bob are
space-like separated and receive particles sent from and prepared by a third party, say,
Charlie. Alice and Bob are each capable of performing certain measurements on those
particles by adjusting their measurement apparatus.

More precisely, Charlie prepares the particles by randomly choosing a configuration �
of his preparation apparatus with probability p(�) from a configuration space ⇤. ⇤,
� and p are unknown to Alice and Bob. Upon receiving the particles, Alice and Bob
(randomly) choose between two configurations s 2 S = {1, 2} of their measurement
apparatus and measure the particles, and each of them gets an outcome A,B 2 {�1, 1}.

We now make the following two assumptions about this setting:

• Realism: The configuration � and the measurement setting s uniquely determine
the outcome of the measurements. Consequently, we can assign deterministic
functions

A,B : S ⇥ S ⇥ ⇤ ! {±1} ,

for Alice’s and Bob’s measurement, respectively.

• Locality : If Alice and Bob are space-like separated, Alice’s measurement outcome
cannot a↵ect Bob’s measurement result and vice versa. This implies that in fact
the outcome of A,B only depends on the respective measurement configuration of
Alice or Bob so that we can write

A :S ⇥ ⇤ ! {±1}; (s,�) 7! As(�)

B :S ⇥ ⇤ ! {±1}; (s,�) 7! Bs(�)

Notice that in this setting, the measurement outcomes for Alice and Bob are random,
but only because they don’t know the exact way in which the state was prepared, �. If
the knew it, they could simply compute As(�) or Bs(�) and predict the outcome with
certainty. The randomness here is then just a result of ignorance about �. � is called
a hidden variable.

Consider the following expectation value:

S = hA1B1 + A2B1 + A1B2 � A2B2i� (6)

Here, hXi� =
P

�2⇤ X(�)p(�) is the expectation value of the random variable X that
depends on �.

a) Prove that |S|  2 for a local realistic hidden variable setting of the type described
above.

Now assume that Charlie does not send an arbitrary pair of particles, but a bipartite
quantum state ⇢AB, where the first tensor copy is sent to Alice and the second to Bob.
The measurements Alice and Bob are allowed to perform are two measurements with
outcomes ±1 each, so Ai ⌦ 1, and 1 ⌦ Bi, i = 1, 2, with Ai, Bi observables on C2 with
spectrum {±1}. Consider a quantum mechanical version of the previous expectation
value:

Sqm = hA1 ⌦ B1 + A1 ⌦ B2 + A2 ⌦ B1 � A2 ⌦ B2i⇢ , (7)
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b) Consider the following specific case: ⇢ = | ih | where | i = 1p
2
(|00i + |11i),

A1 = X,A2 = Z,B1 = (X + Z)/
p
2, B2 = (X � Z)/

p
2. Compute Sqm. What do

you conclude?

c) Also, consider the case ⇢ = 1
2(|00ih00| + |11ih11|) and A1 = X,A2 = Z,B1 =

(X + Z)/
p
2, B2 = (X � Z)/

p
2. Compute Sqm and compare with the result of

the previous point.
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