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COMPLETENESSRELATION
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Egli is a good definition because

1470107 1 147 147
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Now let's startwith the first question
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Weshould show that its 81427 147 14170107 1177010

using the definition

Wehave
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First of all let's familiarize with thedifferentnotation
We define In E and ist I
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We'll present 3 was to do that
First of all At us stress something about a B

If A is a matrix acting on Hg
B tanti a y

them A b acts on Ha ha
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Wehave
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So using eq one in verify explicitly that usingthebasileis
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And similarly fan the others e 202

umane
where Ai il Als

and B with Biscible

So we have
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Similarly for the others

3

One can deriva the matrix farm of A Beast

Computing O B 17015 I element ofthebasa 170157

For example è Y 107010 117 i 1 i 1270117

TOY IO 4 11710107

X Y 12701 i 100117
X Y 117011 i 107817

So defining 10010 I 10,17 11,0
g

in È
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un
1,0

And similarly forthe others
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let's rap and stress useful properties ofPaulis
PAULI PROPERTIES
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Now
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Moreover X Y 2 I are orthogonal infatti
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We have the state 52187
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the state before measurement in 177 a 10 BID
densitymatrix

If we perform a measurement but we don't knowthe outcome

we can describe the systemwith a mixed state
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1. Tensor products
The configuration space of a quantum system with multiple degrees of freedom is de-
scribed by the tensor product of the Hilbert spaces of each degree of freedom. In the
following exercise we will familiarise ourselves with the construction of tensor product
spaces.

Let H1 and H2 be Hilbert spaces with basis B1 = {|ii1}
d
i=1 and B2 = {|ji2}

D
i=1,

respectively. One can construct a new vector space H1 ⌦H2 by using the set of tuples
B1⇥B2 = {(|ii1 , |ji2) : |ii1 2 B1, |ji2 2 B2} as a basis. The basis elements (|ii1 , |ji2)
are also typically denoted by |ii |ji, |i, ji or |ii⌦|ji. The last notation can be extended
to a bilinear composition ⌦ : H1 ⇥H2 ! H1 ⌦H2 by defining

| i ⌦ |�i :=
dX

i=1

DX

j=1

hi| i hj |�i |i, ji . (1)

This automatically defines a scalar on the tensor product space product by

hij |kli = �ik�jl (2)

a) What is the dimension of the vector space H1 ⌦H2? What is the Hilbert space of
a system of n spin-1/2 particles? What is its dimension?

b) Show that the operation ⌦ : H1 ⇥H2 ! H1 ⌦H2 defined above is bilinear.

c) Is ⌦ : H1 ⇥H2 ! H1 ⌦H2 surjective? (Please argue.)

d) Define the tensor product on the level of operators A,B,C : H1 ! H1 acting on
vectors |�i , | i 2 H1: as

(A⌦ B)(|�i ⌦ | i) = (A |�i)⌦ (B | i), (3)

show that

(i) (A⌦ B)(C ⌦D) = (AC)⌦ (BD)

2. Pauli matrices and the Bloch sphere
The Pauli matrices are one of the most ubiquitous objects in quantum mechanics. They
act on the simplest non-trivial Hilbert space H = C2.

X =

✓
0 1
1 0

◆
, Y =

✓
0 �i
i 0

◆
, Z =

✓
1 0
0 �1

◆
.

In this exercise we want to recap their properties.

a) Show that these matrices mutually anticommute, i.e. AB = �BA and that all of
them square to the identity.

b) Explicitly compute the 4 ⇥ 4 matrices X ⌦X, Z ⌦ Z, X ⌦ Y and Y ⌦X in the
tensor product basis.

c) Can you express the product XZ again as a Pauli matrix?
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We now want to use Pauli matrices to study the space of all qubit observables: the
hermitian matrices h(C2). This space is canonically equipped with the Hilbert-Schmidt

inner product

hA,Bi := Tr(AB†).

The norm that is defined by this product is also called Frobenius norm. Both will
constant companions in this course.

d) Show that with respect to this inner product that the Pauli matrices together with
the identity form an orthogonal basis for h(C2).

e) Find the normalized version of this basis with respect to the Frobenius norm.

Recall that a density matrix ⇢ is a hermitian operator with all positive eigenvalues such
that Tr(⇢) = 1. We restrict ourselves – for now – to the qubit case.

f) You have shown that the Paulis with the identity form a basis of the hermitian
matrices. Prove that, in this basis, the set of density matrices is described by a
unit ball B1(0) = {(a, b, c) 2 R3; a2 + b2 + c2  1} (called Bloch sphere).

g) Where do the pure states (⇢ = | ih |) live in this ball? Which point corresponds
to the maximally mixed state (⇢ = 1/2)?

3. Beam splitters and interferometers

Figure 1: Depiction of a beam splitter

In this exercise we consider a simple example of operations on a qubit consisting of a
single photon. To this end we introduce an optical element called beam splitter, that
has two inputs and two outputs (see Fig. 1(a)). Each input consists of an optical mode

that can be populated by photons (don’t worry if these words don’t mean much to you
at the moment, they should become intuitively clear in the following). For example the
state

��0̃
↵
= |1iA |0iB

represents a photon in mode A and no photons in mode B. Similarly
��1̃
↵
= |0iA |1iB

means that the photon is in mode B. In general, we will denote by |niJ the state de-
scribing n photons in mode J . We note hn|n0

i = �n,n0 . Quantum-mechanically, a beam
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splitter is given as a linear, unitary operator whose restriction to H = span
���0̃

↵
,
��1̃
↵�

is represented by the matrix

S =
1
p
2

✓
1 i
i 1

◆

in the same basis.

a) Confirm that
��0̃
↵
and

��1̃
↵
are orthogonal. The span of these vectors is hence

H = C2 and can be then treated as an e↵ective qubit.

We introduce the number operator

NJ =
1X

n=0

n |niJ hn|

that “counts” how many photons are in mode J , in the sense that NJ |niJ = n |niJ .
The total number of photons in modes A and B is counted by the operator

NAB = NA ⌦ IB + IA ⌦NB.

b) Show that any state | i = ↵
��0̃
↵
+ �

��1̃
↵
satisfies NAB | i = | i . We then say

that the total photon number is one.

c) What can we say about the total photon number of the state S
��0̃
↵
?

d) Show that the operators |0iA h0| ⌦ IB, |1iA h1| ⌦ IB are projectors. What can we
say about the probability of having a photon in mode A if we have the state

��0̃
↵
?

e) Upon input
��0̃
↵
, what is the probability of having one photon in mode A0 at the

output of the beam splitter? And in mode B0? What are these probabilities if we
instead input

��1̃
↵
?

We can interpret the previous result saying that a single photon, coming in at any input
of the beam splitter, has probability 1/2 to be transmitted and probability 1/2 to be
reflected by S. Beam splitters can be combined to obtain more general interferometers.
For example, we can imagine to send the outputs of S, A0 and B0 into the inputs of
another beam splitter (see Fig.1(b)).

f) Calculate the probability to detect one photon at the output A00 of the second
beam splitter.

Now assume that we repeat this construction, namely we keep adding beam splitters
that each take the output state of the preceding one as their inputs.

g) Calculate the detection probabilities of the output states of such an interferometer
with N beam splitters, where N 2 N.

h) Imagine that someone performs a measurement on mode B0 but does not tell us
whether they detected a photon or not. How can we describe the state of the two
modes?
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