Avoiding barren plateaus via transferability of smooth solutions in Hamiltonian Variational Ansatz

Antonio A. Mele, Glen B. Mbeng, Giuseppe E. Santoro, Mario Collura, Pietro Torta

arXiv:2206.01982

Variational Quantum Algorithms

- Leading NISQ strategy
- The problem is encoded in minimising a cost function

(e.g. finding Ground state of an Hamiltonian)

(e.g. Hamiltonian expectation value)

Variational Quantum Algorithms

- Leading NISQ strategy
- The problem is encoded in minimising a cost function

(e.g. finding Ground state of an Hamiltonian)

(e.g. Hamiltonian expectation value)

- The **main steps** are:
 - 1. State preparation using a parameterized circuit
 - 2. Measurement process
 - 3. Classical optimization

Variational Quantum Algorithms

- Leading NISQ strategy
- The problem is encoded in **minimising a cost function**

(e.g. finding Ground state of an Hamiltonian)

(e.g. Hamiltonian expectation value)

- The **main steps** are:
 - 1. State preparation using a parameterized circuit
 - 2. Measurement process
 - 3. Classical optimization

MAIN DIFFICULTIES:

- Noise
- Non-convex optimization
- Flat landscape (a.k.a. **Barren Plateaus**)

High circuit expressibility

Exponential vanishing gradients with number of qubits N

(Barren Plateaus definition)

[McClean et al., Nat. Comm. (2018)] [Holmes et al., PRX Q. (2022)]

These are symmetry-preserving ansatz, known as Hamiltonian Variational Ansatz (generalisation of QAOA)

These are symmetry-preserving ansatz, known as Hamiltonian Variational Ansatz (generalisation of QAOA)

We analyzed:

$$H_{XYZ} = \sum_{j=1}^{N} \left(X_j X_{j+1} + \Delta_Y Y_j Y_{j+1} + \Delta_Z Z_j Z_{j+1} \right)$$

$$H_{LTFIM} = \sum_{j=1}^{N} Z_j Z_{j+1} - g_x \sum_{j=1}^{N} X_j - g_z \sum_{j=1}^{N} Z_j$$

These are symmetry-preserving ansatz, known as Hamiltonian Variational Ansatz (generalisation of QAOA)

We analyzed:

$$H_{XYZ} = \sum_{j=1}^{N} \left(X_j X_{j+1} + \Delta_Y Y_j Y_{j+1} + \Delta_Z Z_j Z_{j+1} \right)$$

$$H_{LTFIM} = \sum_{j=1}^{N} Z_j Z_{j+1} - g_x \sum_{j=1}^{N} X_j - g_z \sum_{j=1}^{N} Z_j$$

Although symmetry-ansatz, there can be Barren Plateaus

[Larocca et al., ArXiv (2021)]

Pattern in Optimal Parameters

 $(\alpha_1, \ldots, \alpha_P, \beta_1, \ldots, \beta_P)$

Pattern in Optimal Parameters

 $(\alpha_1,\ldots,\alpha_P,\beta_1,\ldots,\beta_P,)$

How can we find this pattern?

Transferability of solutions

Transferability of solutions

The warm-start allows to avoid the flat region

Solution transferability from small to larger system sizes, and from small to larger circuit depths.

SUMMARY

Solution transferability from small to larger system sizes, and from small to larger circuit depths.

OPEN QUESTIONS

- 2D systems
- This helps avoiding bad local minima and BPs, but what about noise resilience?
- Analytical understanding (connection with Adiabatic QC?)

SUMMARY

Solution transferability from small to larger system sizes, and from small to larger circuit depths.

OPEN QUESTIONS

- 2D systems
- This helps avoiding bad local minima and BPs, but what about noise resilience?
- Analytical understanding (connection with Adiabatic QC?)

THANKS FOR YOUR ATTENTION!