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I. INTRODUCTION

This crash course introduces the essential tools of representation theory, with a focus on preparing you for appli-
cations in quantum information science. At its core, representation theory studies groups—mathematical structures
that capture symmetries—through the lens of linear algebra [1, 2].

Why should we care about representation theory in quantum information? Much of quantum information theory
and quantum computing is built on linear algebra—and representation theory can be seen as a powerful extension of
linear algebra. It provides a systematic framework to uncover and exploit symmetries, turning seemingly complicated
problems into ones with clear structure and elegant solutions. Once you learn to use it, it feels like a secret weapon.

In quantum information, representation theory lies at the heart of many essential ideas. It underpins fundamental
subroutines in quantum algorithms, such as the quantum Fourier transform [3] and quantum Schur sampling [4, 5] for
spectrum estimation [6]. It provides the mathematical machinery to understand and classify entanglement [7], and
it is crucial for the efficient diagonalization of many-body Hamiltonians, where exploiting symmetries can drastically
reduce complexity. Even in standard quantum mechanics, topics like determining the spectrum of the hydrogen atom
or performing Clebsch—Gordan decompositions to add angular momenta are direct applications of representation
theory [8].

Beyond quantum information, its reach extends throughout physics. In solid-state physics it determines crystal
band structures [9], in quantum chemistry it governs the analysis of molecular vibrations and wavefunctions [10], in
particle physics it forms the mathematical backbone of the Standard Model [11], and even in classical mechanics it
provides systematic ways to exploit symmetries for solving problems more efficiently.

We now begin by reviewing the basic language of group theory, which forms the foundation for the entire subject.

II. GROUP THEORY

We begin with the definition of a group.
Definition I1.1 (Group). A group is a set G equipped with a binary operation o : G x G — G satisfying:
1. Closure: For all a,b € G, we have ao b € G.
2. Associativity: For all a,b,c € G, (aob)oc=ao (boc).
3. Identity: There exists an element e € G such that eog=goe =g for all g € G.

4. Inverses: For every g € G, there exists g~ € G such that gog™ ' =g tog=c.
For brevity, we write gh in place of g o h.

The identity element of a group is unique, as is the inverse of each element. Moreover, for any g € G, the sets
{h | h € G} and {gh | h € G} coincide. In particular, for any function f : G — C we have

D Fh) =" flgh), (1)
heq@ heq@

a property that will be used repeatedly in later proofs.

Definition II1.2 (Basic group-theory definitions). Let G be a group.

e Order of a group: The order of G, denoted |G|, is the number of elements in G. If G has infinitely many
elements (e.g. (Z,+)), we say that G has infinite order.

e Order of an element: The order of an element g € G is the smallest positive integer k such that gF = e. If
no such k exists, g is said to have infinite order.

e Subgroup: A subset H C G is a subgroup if it is itself a group under the operation of G. We write H < G. !

e Generators: A subset S C G is a set of generators if every element of G can be written as a finite product
of elements of S and their inverses. We write G = (S). If G can be generated by a single element g, we write
{g9) = {g" | k € Z} and call G cyclic. The cardinality |{g)| equals the order of g.

1 The identity of G is also the identity of H, and for every h € H, the inverse h~! in G lies in H.



e Conjugacy and conjugacy classes: Two elements g,k € G are conjugate if there exists h € G such that
k = hgh~'. The conjugacy class of g is

Clg) == {hgh™" | h € GY. (2)
Conjugacy is an equivalence relation on G: it is reflexive (g = ege™!), symmetric (if k = hgh~! then g = h=1kh),
and transitive (if £ = hgh™! and m = uku™! then m = (uh)g(uh)~1).

It follows that the conjugacy classes C(g) form a partition of G: each element of G lies in exactly one conjugacy
class, and distinct classes are disjoint. Equivalently,

G=|]c, (3)

gER
where R is any set containing one representative from each conjugacy class, and | | denotes a disjoint union.
Example II.3 (Examples of groups). Examples of groups include:

e Integers: (Z,+), the set of integers with addition. Identity: 0. Inverse: —n for n € Z. Order: infinite.
Generator: 1 (or equivalently —1).

e Cyclic group: (Z,,+ mod n), the set {0,1,...,n— 1} with addition modulo n. Identity: 0. Inverse: (—k) mod
n. Order: n. Generator: 1 (or any k coprime with n).

e Symmetric group: (S,,o0), the group of all permutations of {1,...,n}. Operation: composition of permuta-
tions. Order: n!. Generators: the adjacent transpositions (i,7 4+ 1) for i =1,...,n — 1.

e Dihedral group: (D,,o), the symmetries of a regular n-gon with composition. Elements: n rotations and n
reflections, so |D,,| = 2n. Generators: rotation ¢ (by 27 /n) and reflection 7, satisfying

o"=e, T =e, TOT=0 1.

e General linear group: (GL(n,C), ), the set of invertible n X n complex matrices. Operation: matrix multi-
plication. Order: infinite.

e Unitary group: (U(n),-), the set of n x n matrices U with UTU = I. Operation: matrix multiplication. Order:
infinite.

e Special unitary group: (SU(n),-), the subgroup of U(n) with det(U) = 1. Same operation, identity, and
inverses as U(n). Order: infinite.

e Orthogonal group: (O(n),), the group of real n x n matrices O with OT O = I. Operation: matrix multipli-
cation. Order: infinite. Its subgroup SO(n) consists of matrices with det(O) = 1.

We now summarize several key structural properties used to classify groups.
Definition I1.4 (Types of groups). Let G be a group.
e Finite group: G is finite if |G| < co. Examples: (Z,,,+), D,, and S,, are finite. In contrast, (Z, +) is infinite.
e Infinite group: G is infinite if it has infinitely many elements. Discrete example: (Z,+). Continuous examples:
Lie groups such as GL(n,C) or U(n), which, in addition to their group structure, also carry the structure
of a smooth manifold. In a Lie group, both the multiplication and inversion maps are smooth (infinitely

differentiable).

e Abelian group: G is Abelian if gh = hg for all g, h € G. Examples: (Z,+) and (Z,,+) are Abelian, whereas
S, and D,, are non-Abelian for n > 3.



A. Cosets, normal subgroups, and Lagrange’s theorem

Definition I1.5 (Left and right cosets). Let G be a group and H < G a subgroup. For any g € G, the left coset of
H with representative g is

gH ={gh | h e H}.
Similarly, the right coset of H with representative g is
Hg:={hg|he H}.
Cosets are closely related to the idea of quotienting a group by a subgroup.

Definition I1.6 (Quotient set). Let H < G. The set of all left cosets of H in G is called the left quotient set and is
denoted

G/H :={gH | g € G}.
Similarly, the set of all right cosets of H in G is called the right quotient set and is denoted
H\G:={Hg | g€ G}.
To define quotient groups, we first recall the notion of normality.

Definition II.7 (Normal subgroup). A subgroup H < G is normal if
ghg e H forallge G, heH.

Equivalently, gH = Hg for all g € G. Normality is denoted by H < G.

As examples, the special unitary group SU(n) is a normal subgroup of the unitary group U(n), and in quantum
information, the Pauli group is a normal subgroup of the Clifford group. In contrast, U(n) is not normal in the general
linear group GL(n, C).

We can now collect fundamental properties of cosets. For the last property, the notion of normality is essential.

Lemma I1.8 (Basic properties of cosets). Let G be a group and H < G a subgroup.
e Disjointness: Any two left cosets are either disjoint or identical.
e Equal size: All left cosets of H in G have the same cardinality as H, i.e. |gH| = |H| for every g € G.
e Partition of G: The left cosets of H form a partition of G, i.e.

G= |_| gH.
gHEG/H

e Normal subgroups and quotient groups: If H < G (i.e. H is normal), then left and right cosets coincide,
and the set of cosets G/H inherits a natural group structure with multiplication

(9H) - (¢'H) = (99')H,
which is well defined (independent of the chosen coset representatives). This group is called the quotient group
G/H.
Proof. We prove each property point by point:

e Disjointness: Assume gH N g'H # (). Then there exists x € gH Ng'H, so = = gh = g’'h’ for some h, i/ € H.
Multiplying on the right by h~! yields ¢ = ¢’h’h~!. Since ”'h™' € H, we have g € ¢’H. For any k € H,
gk =g (Wh='k) € ¢'H, so gH C g’H. By symmetry, ¢H C gH, hence gH = g'H. If gH N g'H = (), the cosets
are disjoint.

e Fqual size: Define f : H — gH by f(h) = gh. This map is bijective: if f(h) = f(h'), then gh = gh’/ = h = h/;
and for any y € gH, there exists h € H with y = gh = f(h). Therefore, |gH| = |H]|.



e Partition of G: For every g € G, g € gH. By disjointness, any two distinct cosets do not overlap. Thus, G is
the disjoint union of all left cosets of H.

e Normal subgroups and quotient groups: If H < G, then for every g € G and h € H we have ghg~' € H, which
implies gH = Hg because for any x € gH we can write x = gh = (ghg™')g with ghg™! € H, so x € Hg and
gH C Hg (and similarly for Hg C gH).

To prove that coset multiplication is well defined, assume gH = ¢g1H and ¢'H = g{H. Then there exist
hi,ho € H such that g; = gh; and g} = ¢g'ho. Consider (g1g])H = (gh19'ho)H. Since H is normal, ¢'~thyg’ € H,
so we can write h1g’ = ¢g’'hs for some hs € H. Thus (ghi1g’'ha)H = (99’hshe)H = (g¢9')H because hghy € H
and multiplying by an element of H does not change the coset. Therefore (g1¢1)H = (99’)H, which proves
that the product (¢H) - (¢’H) = (g9¢')H is independent of the chosen coset representatives and G/H inherits a
well-defined group structure.

O

Theorem II.9 (Lagrange’s theorem). Let G be a finite group and H < G a subgroup. Then |H| divides |G|.
Specifically, it holds

|G| = |G/H] - [H].

Proof. By the partition property established in Lemma I1.8, the left cosets of H form a disjoint partition of GG, and
by the equal-size property of the same lemma, each coset has cardinality |H|. Since there are exactly |G/H]| cosets,
it follows that

|G| = |G/H] - |H].

We call [G : H] .= |G/H]| the index of H in G. Thus,

_lal

G/H| =G+ H] = [

If H < G is normal, then G/H is a group (the quotient group) of order |G/H| = |G|/|H]|.
Moreover, Lagrange’s theorem implies that the order of any element g € G divides |G| (since |(g)| | |G]|). Thus, if
|G| is prime, then G is cyclic and generated by any non-identity element.

B. Group homomorphisms

Group theory is not only about studying single groups in isolation, but also about understanding how different
groups relate to each other. The natural way to compare two groups is via maps that preserve their group operation.

Definition I1.10 (Group homomorphisms, kernels, and images). Let G and G’ be groups.

e Homomorphism: A map ¢ : G — G’ is called a group homomorphism if for all g,h € G we have ¢(gh) =
©(9)(h). Homomorphisms automatically preserve the identity and inverses, i.e. p(eg) = eq and p(g~1!) =
o(g)~tforallg e G.

e Kernel: The kernel of ¢ is the set

kerp :={g € G| ¢(9) =ec}.
e Image: The image of ¢ is the set

ime = {p(g)|ge G} CG".

e Isomorphism: A homomorphism ¢ is an isomorphism if it is bijective. In this case, G and G’ are said to be
1somorphic, written G = G’, and they have the same group structure.



e Faithful homomorphism: A homomorphism ¢ : G — G’ is called faithful if it is injective. Equivalently, ¢ is
faithful if its kernel is trivial:

ker p = {eg}.

This means that different elements of G are sent to different elements of G’, so the homomorphism captures the
full structure of G.

Note that a faithful homomorphism need not be surjective, so it is not necessarily an isomorphism.

Proposition I1.11 (Kernel and image of a group homomorphism). Let ¢ : G — G’ be a group homomorphism. Then:
1. The kernel ker ¢ is a normal subgroup of G, i.e. ker p < G.
2. The image im @ is a subgroup of G’, i.e. imp < G'.

Proof. (1) Kernel is normal: The identity eq satisfies p(eg) = eqr, s0 eg € ker . If g, h € ker ¢, then p(gh™!) =
o(g)ph)~t = ec/ea,l = egr, s0 gh™! € ker . Thus ker ¢ < G. For normality, for any g € G and k € ker ¢,

wlgkg™!) = p(9)e(k)(9) ™" = p(g)ecrv(9) ™ = ecr,
hence gkg~! € ker ¢.
(2) Image is a subgroup: If x,y € im ¢, then = ¢(g) and y = p(h) for some g, h € G. Then zy~! = p(g)p(h)~! =
o(gh™) € imp. Also, p(eq) = eqr € im.
[

Group homorphisms will play a central role later when we study group representations. Indeed, a representation of a
group is simply a homomorphism from G into the group of invertible linear transformations on a vector space.

C. Actions of groups

Beyond the study of groups and homomorphisms, it is often useful to understand how groups can act on other
sets. A group action formalises the idea of representing elements of a group as transformations of a set in a way that
respects the group structure.

Definition I1.12 (Group action). Let G be a group and X a set. A (left) action of G on X is a map
S GE@x X = X, (g,2) — g-x,
such that:
1. Identity: e-x =z for all z € X.
2. Compatibility: (gh) -z =g (h-z) for all g,h € G and z € X.
If such a map exists, we say that G acts on X.
Remark I1.13. Typical examples include:
e S, acting on {1,...,n} by permutation.
e A matrix group acting on R” or C™ by matrix multiplication.
e A group G acting on itself by left multiplication, ¢ - x = gz.
e A group G acting on itself by conjugation, g -z = gzg~'.
Definition II.14 (Orbit and stabilizer). Let a group G act on a set X.
e The orbit of x € X is

Orb(z) ={g-z | g € G}.



e The stabilizer of x € X is the subgroup

Stab(z) ={g9e€G|g-z =2} <G

Theorem II1.15 (Orbit—Stabilizer Theorem). Let G act on X and fit x € X. Then
|G| = |Orb(z)| - |[Stab(z)].
FEquivalently, |Orb(z)| = [G : Stab(x)].

Proof. Fix x € X. Two elements g,h € G send = to the same point in the orbit, i.e. g -z = h - z, if and only if
g th € Stab(z) (equivalently, h € gStab(z)). Thus, the elements of G that map z to the same point in the orbit
form exactly one left coset of Stab(z). Therefore, the orbit Orb(z) is in one-to-one correspondence with the set of left
cosets G /Stab(z). By Lagrange’s theorem we obtain

G|

Orb(a)| = |G/Stab(e)| = 1o P

O

Corollary I1.16 (Conjugacy classes and centralizers). If G acts on itself by conjugation, i.e. g-x = grg~", then:

e The orbits under this action are precisely the conjugacy classes
C(z) ={gxg™" | g € G}.

o The stabilizer of v € G is its centralizer

Cent(z) :={g € G | gr = zg} < G.

Consequently, by the Orbit-Stabilizer Theorem,

|G|

|IC(z)| = m-

D. Symmetric group
Definition I1.17 (Symmetric group). For a positive integer n, the symmetric group S, is the group of all bijections
(permutations)
o:{1,2,...,n} = {1,2,...,n},
with the group operation given by composition of functions.

The identity element is the identity permutation id(i) = i, every permutation has an inverse given by its inverse
function, and |S,| = nl.

Definition I1.18 (Transpositions and cycles). A transposition is a permutation that swaps two elements and leaves
all others fixed, denoted (i j). A k-cycle is a permutation

(iyiy ... i),

which maps i; — i;41 for j < k and i — 1, leaving all other elements fixed. The length of a cycle is the number of
elements it permutes, and the order of a cycle is its length. Disjoint cycles commute.

Example I1.19. S; = {id, (12)} has two elements, where (12) swaps 1 and 2. S3 has six elements:
where (i) are transpositions and (123) is a 3-cycle of order 3.

We now collect the main structural properties of S,,.



Lemma I1.20 (Basic properties of S,,). The symmetric group S,, satisfies:

e Cycle decomposition: Fvery permutation in S, can be written uniquely (up to the order of disjoint cycles) as
a product of disjoint cycles.

e Minimal transposition length: Any k-cycle can be written as a product of k—1 transpositions. Consequently,
any permutation in S, can be written as a product of at most n — 1 transpositions (not necessarily adjacent).

e Generators: S, is generated by the adjacent transpositions (12),(23),...,(n —1n).

e Conjugacy classes: Two permutations o,7 € S, are conjugate if and only if there exists m € S, such that
7 =mon~t. Conjugacy classes in S, correspond exactly to their cycle type (the cycle type of a permutation is
the multiset of the lengths of its disjoint cycles, where multiplicities are counted. For example, in Sy, (12)(34)
has cycle type {2,2}, whereas (12)(3)(4) has cycle type {2,1,1}).

e Transposition count: A permutation cannot be expressed both as a product of an even number and as a product
of an odd number of transpositions.

Proof. Cycle decomposition: Given o € S,,, pick any i € {1,...,n} and follow its images under o:
i o(i) = o2 (i) = -

until it returns to ¢. This process defines a cycle. Repeating the procedure for any element not yet included in a cycle
yields a product of disjoint cycles.

Uniqueness holds because each element of {1,...,n} belongs to exactly one cycle: starting from any element ¢ and
iterating o always produces the same cycle, and disjoint cycles involve disjoint sets of elements. The only freedom
is the order in which the disjoint cycles are written, but this does not change the permutation since disjoint cycles
commute.

Minimal transposition length: Any k-cycle (i1 43 ... i) can be written as a product of k — 1 transpositions:

(iyiy ... ip) = (iyin)(iyin_1)--- (i1 i2).

Thus, if o is a product of disjoint cycles of lengths ki, ko, ..., ky, with k1 +-- -+ k,, = n, it can be expressed using at
most (k1 — 1)+ -+ + (km — 1) =n —m < n — 1 transpositions.

Generators: Every permutation can be written as a product of cycles, and each cycle can be written as a product
of transpositions as above. Furthermore, any transposition (i j) (with ¢ < j) can be expressed in terms of adjacent
transpositions:

(1)) =0-1)0-2j-1--(Gi+1)-- (-2 -1 — 1)),

where j is moved next to ¢, swapped, and then moved back. Therefore, S, is generated by the adjacent transpositions
(12),(23),...,(n—1n).

Conjugacy classes: If 7 = mor~!, conjugation by 7 simply relabels the elements of ¢, so 7 has the same cycle
structure, and thus the same cycle type, as 0. Conversely, if two permutations have the same cycle type, a suitable
relabeling of their elements (via some 7 € S,,) transforms one into the other, proving that they are conjugate.

Transposition count: Suppose a permutation o € S,, can be expressed in two ways:

0-:7_17_2"’7_7‘:/)1/)2"'[)53

where each 7; and p; is a transposition. Then

1 -1 —1
:Tl"'TTps pl .

id=o00"
This represents the identity as a product of r + s transpositions.

An inversion is a pair (i,7) with ¢ < j but (i) > o(j). Each transposition changes the inversion count by 1 mod 2,
because swapping two elements reverses their relative order and thus flips the parity of the inversion count. Since the
identity permutation has zero inversions, an odd number of transpositions cannot yield the identity. Therefore, r 4 s
must be even, which implies that r and s differ by an even number. O

The parity of a permutation is defined as the parity (evenness or oddness) of the number of transpositions in any
of its decompositions. By the previous lemma, this notion is well defined.



Definition I1.21 (Parity of a permutation). A permutation o € S, is called even if it can be written as a product
of an even number of transpositions and odd otherwise.

The set of even permutations forms a normal subgroup of S,, called the alternating group A,.

Its order is |A,,| = %' Indeed, every permutation in S,, has a well-defined parity and is either even or odd. The even
permutations form a subgroup A4,, < S,,, and the odd permutations form the other coset gA,, for any odd permutation
g, since multiplying an even permutation by ¢ yields an odd permutation and vice versa. Because cosets of a subgroup
have the same size and partition Sy, it follows that |S,| = 2|A4,|, and therefore |A,| = |S,|/2 = n!/2.

Definition I1.22 (Sign of a permutation). The sign (or signature) of a permutation o € S, is defined as

sen(o) = +1 if o is even,
BTN 21 if o s odd.

This defines a group homomorphism sgn : S, — {£1} whose kernel is the alternating group A,.



IIT. REPRESENTATION THEORY

We now turn to representation theory, where the central idea is to study groups by mapping their elements to
matrices in such a way that the group multiplication is preserved. This perspective is powerful because it allows us
to translate algebraic problems about groups into questions about linear maps and their associated matrix.

A. Representations of finite groups

Definition III.1 (Representation). A representation of a finite group G on a complex vector space V is a homomor-
phism

p: G — GL(V),

where GL(V) is the group of invertible linear transformations on V. The dimension of V is called the dimension (or
degree) of the representation and is denoted by dim(p).

We will often denote a representation of G by (p, V'), where p specifies the homomorphism and V' is the underlying
vector space. When the space is clear from context, we will simply write p.

If we fix a basis for V, each linear map A € GL(V') can be represented in such a basis by a d X d matrix, denoted by
[A], where dim V' = d. In particular, for every g € G, the linear map p(g) is represented by the matrix [p(g)]. Thus,
in matrix form,

[p]: G — GL(d,C), g+ [p(9)], (4)
where, for all g,h € G,
[p(gh)] = [p(g)] [p(h)], (5)
[p(e)] = 1a, (6)
[o(g~1)] = [p(9)] " (7)

Whenever it is clear from the context that we are working in a fixed basis, we will omit the brackets and simply
write p(g) for its matrix form.

Remark IIT.2 (Thinking in terms of unitary matrices). In quantum information, most of the representations we
encounter are unitary, meaning that

p: G —U(d),

where U(d) is the group of d x d unitary matrices.
If it helps your intuition, you may think of a representation as a map that assigns to each group element g a unitary
matrix U(g) = p(g) such that, for all g,h € G,

U(gh) =U(g)U(h) and U(g)U(g)" = I.

Later, we will see that for finite groups and finite-dimensional complex vector spaces, this viewpoint involves no loss
of generality: for every representation, one can pick a suitable basis in which all the matrices [p(g)] are unitary.

Example III.3 (Quantum information example: cyclic groups and Pauli/Weyl operators). Consider the cyclic group
Zo = {0,1} under addition modulo 2. We can represent it on a single-qubit Hilbert space V = C? in two natural
ways:

e Using the Pauli-X matrix:

e Using the Pauli-Z matrix:



In both cases, p is a valid representation because p(0+1) = p(1) = p(0)p(1) and p(1+1) = p(0) = p(1)p(1). Another
valid (1-dimensional) representation is p(0) =1 and p(1) = —1.

More generally, for the cyclic group Z4 = {0,1,...,d— 1} we can use the Weyl operators on a d-dimensional Hilbert
space. The shift operator X and the phase operator Z are defined by

X[j)=lji+1modd),  Zlj)=w"lj),
where w = €2™/4_ These define d-dimensional representations of Zy via
p(k) =X" or  p(k)= 2",
since p(k + £) = p(k)p(¢) for all k, ¢ € Z4. Additionally, there are d one-dimensional representations given by
or(j) = W, k=0,...,d—1.

Example ITI.4 (Basic examples of representations). Let G be a finite group. Below are three fundamental examples
of representations p : G — GL(V), each acting on a different complex vector space V.

e Trivial representation: The trivial representation pyiv : G — GL(C) is defined by
puivi(g) =1 for all g € G.
It acts on the one-dimensional space V' = C, and every group element is mapped to the identity transformation.

e Permutation representation (of S,): Let G = S, the symmetric group. Define V' = C" with standard
basis {|1),...,|n)}. The permutation representation pperm : Sn — GL(V') is defined by

Prerm(9) [7) = |9(4)) -

Equivalently, the matrix form of pperm(g) is:

e Regular representation: For any finite group G, define the vector space V = C[G] = span{|g) | g € G},
which has dimension |G|. The (left) reqular representation preg : G — GL(V) is given by

preg(9) |h) = |gh) .
In matrix form, this becomes:
preg(9) = Y _ lgh)(h].
heG

That is, G acts on the basis {|h)} by left multiplication.

Note that each of the constructions above satisfies the definition of a representation. In particular, we will see how
the regular representation will play a fundamental role later (as it contains every irreducible representation of G as a
subrepresentation, and it will be used in important proofs).

We also note that if p is a representation of G, then for any invertible linear operator U, the map

p'(9)=Up(g)U™"
is also a representation of G, since it satisfies
p'(gh) = Up(gh)U™" = Up(g)p(h)U™" = (Up(g)U~")(Up()U ™) = p'(9)p' ().
This leads to the following definition.

Definition IIL.5 (Equivalent (isomorphic) representations). Two representations p : G — GL(V) and p' : G —
GL(W) are called equivalent (or isomorphic) if there exists an invertible linear map 7 : V' — W such that

p'(g) =Tpg)T™! Vged.
In this case, V and W necessarily have the same dimension. If p and p’ are equivalent, we write p 2 p’; otherwise, we

write p 2 p'.
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In quantum information, we are often mostly interested in unitary matrix representations, as we mentioned. In this
case, the equivalence of two unitary representations can be directly defined with respect to a unitary matrix instead
of a general invertible matrix. For this reason, the following fact is useful to stress.

Remark III.6 (Equivalence implies unitary equivalence for unitary representations). Let Uy, Us : G — U(d) be two
unitary representations of a finite group G. If they are equivalent in the general sense, i.e. there exists an invertible
matrix 7 such that Us(g) = TU;(g)T~! for all g € G, then there also exists a unitary matrix V such that

Us(9) =VUi(g)VT  Vged.
In other words, for unitary representations, equivalence can always be realized by a unitary change of basis.
The proof follows from standard linear algebra and is omitted here for conciseness

Example II1.7 (Equivalence for Pauli matrices representation of the cyclic group). Consider the previous exam-
ple II1.3. For Zs, the Pauli-X and Pauli-Z representations are equivalent. Indeed, if

(i)

HZFH'=X*  VikeZ,,

is the Hadamard gate, then

so the two 2-dimensional representations are related by the change of basis T'= H.
Now let us introduce the fundamental concepts of reducibility and irreducibility of a representation.
Definition III.8 (Subrepresentations and reducibility). Let p : G — GL(V') be a representation.
e A subspace W C V is called G-invariant if
p(g)lw)y e W VgeG, lw)eW.

e If such a nontrivial subspace W exists (i.e. W # {0} and W # V), then p is called reducible; otherwise, p is
called irreducible. (Often, the shorthand term érrep is used to denote an irreducible representation.)

o If W C V is G-invariant, the restriction of p to W defines a new representation
plw : G = GL(W),  plw(g) = p(9)lw,
called the subrepresentation of p on W.

Note that the above definition of subrepresentation is well defined, i.e. the restriction is indeed a representation.

Proof. Since W is G-invariant, for every g € G we have p(g)W C W, so the map p(g)|w is a well-defined linear
operator on W. For any g,h € G and |w) € W,

plw (9)plw (h) [w) = p(g)(p(h) lw) ) = p(gh) |w) = plw (gh) |w),

and plw (e) = p(e)|w = Iw. Moreover, p|w (g) is invertible because for any g € G, its inverse is given by p|lw (g71):

plw(@)plw(g™") =plw(gg™) =Iw,  plw(g Dplw(g) = plw(g " 9) = Iw.

Therefore, p|w is a representation of G on W. O

If the representation p : G — GL(V) of G is irreducible, we often say that V' is an irreducible subspace (with respect
to the representation p).

Example IT1.9 (Reducibility of the regular representation). The regular representation of a finite group G on the
space V = span{|g) | g € G} is always reducible. Indeed, consider the vector

) =D 1g)-
geG
For every h € G,
ph) [0y =Y " |hg) = > lg) =v),
geG g’ eG

where we relabeled ¢’ = hg. Thus, the span of {|¢))} is a G-invariant subspace. The restriction of p to this one-
dimensional space is irreducible, as every one-dimensional representation is irreducible.
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Before defining the direct sum of representations, let us briefly recall the notion of the direct sum of vector spaces.
If Vi and V5 are vector subspaces of the same vector space, then their sum is defined as

Vi4+ Vo ={vi+vy| vy €Vh, ve €V}
If, in addition, V4 N Vo = {0}, we say that the sum is direct, and we write
Vi@ Vo= {vy+vy| vy €Vh, v9 €V}
In this case, every element of V; @ V5 can be written uniquely as a sum of a vector from V; and a vector from V5.

Definition IT1.10 (Direct sum of representations). Let p; : G — GL(V}) and ps : G — GL(12) be two representations
of a finite group G. The direct sum of p; and psy is the representation

p1®p2: G— GL(V; & V3),
defined by

(P @ p2)(9) = p1(9) @ p2(g), Vg eG,
where the right-hand side is the linear map on V; @ V5 that acts as p1(g) on Vi and as p2(g) on Va.

In matrix form, after choosing a basis of V; & V5 obtained by concatenating bases of V; and V5, we have

o= (" ) - Z| i@ pilg

We now prove that every G-invariant subspace admits an invariant complement.

Proposition ITI.11 (Existence of invariant complements). Let p : G — GL(V') be a representation of a finite group,
and let W CV be a G-invariant subspace. Then there exists a G-invariant subspace WL CV such that

V=Waw.

Proof. Special case: unitary representations. Suppose that p is unitary, i.e. there exists a basis in which
p(9) = U(g) € U(d) for all g € G. Let W+ be the orthogonal complement of W with respect to the standard inner
product. Take any |v) € W+ and |w) € W. For any g € G,

(p(g)v|w) = (v|p(g)t|w) = (v]p(g")|w) =0,

because p(g~!) |w) € W by G-invariance of W and |v) is orthogonal to W. Therefore, p(g) |v) € W+ for all g, showing
that W+ is G-invariant. The orthogonal decomposition then gives V. =W @ W+,

General case. In general, the representation p(g) may not be unitary transformations for all g € G. However, we
can define a G-invariant inner product by averaging over the group:

e = 3 (o
\GI =

This inner product satisfies
(p(h)v,p(h)w)c = <’U,’UJ>G Vh € Ga

which can be shown as follows:

geG

- ﬁ S (plgh)e, plgh)) (9)
geG

- ﬁ S (g, plg ) (10)
g’ eG

(v, w)g, (11)



where in the third step we relabeled g’ = gh; the sum is unchanged because g — gh is a bijection of G. That is, for
each g € G, p(G) is a unitary transformation. Now define W+ as the orthogonal complement of W with respect to
(,)g. Forve Wt and w e W,

(p(h)v, w)e = (v, p(h™Hw)e =0,

because p(h~")w € W and v L W. Thus, p(h)v € W+, so W+ is G-invariant. Finally, the orthogonal decomposition
theorem yields V =W @ W+. O

This leads to a fundamental result in the representation theory of finite groups:

Theorem IIT1.12 (Maschke’s theorem: complete reducibility). Fuvery finite-dimensional representation of a finite
group G over C is completely reducible, i.e. it can be written as a direct sum of irreducible representations.

Proof. We prove this by induction on dim V. If p is irreducible, there is nothing to prove. If p is reducible, let W; C V/
be a nontrivial G-invariant subspace. By Proposition II1.11, there exists an invariant complement W5 such that

V =W; & Ws. (12)

The restrictions p|w, and p|w, are representations of smaller dimension, so by induction they decompose as direct
sums of irreducible representations. Combining these decompositions yields the desired result. O

Corollary II1.13 (Block-diagonal form of representations). By Maschke’s theorem, every finite-dimensional complex
representation p : G — GL(V) of a finite group G decomposes as a direct sum of irreducible representations. That is,

k
ol9) = Drvlo) V= DV (13)

where each py, is an irreducible representation of G acting on the subspace V; C V.

Choosing a basis of V' obtained by concatenating bases of the V; yields a block-diagonal matrix form for p(g):

M%M[ %H“. 8
[p(9)] = : p%g._ : (14)
0 0 - [pw(9)]
k
:zNW@MMM, (15)

where [py;(g)] is the matrix of py,(g) in a chosen basis of V;.

If some of the irreducible subrepresentations py, are equivalent (i.e. according to Definition II1.5), we can reorganize
our vector space to group all equivalent copies together. Let p1, ..., p, be a set of pairwise non-isomorphic irreducible
representations, and let m; be the multiplicity of p; in p, i.e., the number of times p; appears in the decomposition.
Then we can write

T

ol9) =D (pilg) @+ 2 pily) ) (16)

i=1

m,; times
= @ (I"”i ® Pi(g))a (17)
1=1

and similarly for the underlying vector space:

V= Vio---aV, (18)
@ ( m; times )
(e (19)
i=1
=span{ |i,a) ®[v) | 1<i<r, 1<a<m,, |v)€Vi}. (20)

Here:
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e p; are pairwise non-isomorphic irreducible representations acting on V;,
e m; € N is the multiplicity of p; in p, i.e. the number of times p; appears in the decomposition,
e C™i is a multiplicity space on which p(g) acts trivially,

e {|i,a)}, ", is an orthonormal basis of the multiplicity space C™, and {|v)} a basis of V.

In matrix form, after choosing a basis adapted to this decomposition, we obtain

- [lpi(9)] 0
o(9)] = €D ' (21)
=t 0 [pi(9)]
1=1
= |i)(i| @ I, @ [pi(g)] (23)
=53 Jisalial @ [ilo)]. (24)
=1 a=1

Here I,,, = > ., |a)a| is the identity on the multiplicity space.

Definition II1.14 (Isotypic component). Let p : G — GL(V) be a finite-dimensional complex representation of a
finite group G, and suppose

r

veBECmov),  plg) =@ Tn 20il9),

i=1 i=1

where the V; are pairwise inequivalent irreducible representations. The isotypic component corresponding to p; are
defined as the G-invariant subspace

VO =C™ eV

B. Unitary representations

We now show that for finite groups any representation is equivalent to a unitary one, i.e. we can always pick an
orthonormal basis in which the matrices of the representation are unitary for all group elements.

Definition IT1.15 (Unitary representation). Let G be a group and let (V,{-,-)) be a complex inner product space.
A representation p : G — GL(V) is said to be unitary (with respect to (-, -)) if

(p(g)v, p(g)w) = (v,w)  Vo,weV, geqG.

Theorem II1.16 (Every representation is unitary with respect to a suitable inner product). Let p: G — GL(V') be
a finite-dimensional complex representation of a finite group G. Then there exists a Hermitian inner product (-,-)c
on V with respect to which p is unitary.

Proof. Start with any Hermitian inner product (-,-) on V. Define a new inner product by averaging over the group
(as in the proof of Proposition ITI.11 that we used in Maschke’s theorem):

(v, w)q = Z Jw).

QEG
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This is a Hermitian, positive-definite inner product. Moreover, it is G-invariant: for all h € G,

{p(h)v, p(h)w)c = (v, w)e-
Therefore, p(g) is unitary with respect to (-,-)q for all g € G. O

The existence of such an inner product implies that one can always pick an orthonormal basis (with respect to this
inner product) in which, for every g € G, the matrix of p(g) is unitary.

This follows from the following standard fact: given any Hermitian inner product (-,-) on a complex vector space
V, there exists an orthonormal basis with respect to this inner product (by the Gram—Schmidt process). Moreover,
a linear operator U : V' — V is unitary (with respect to (-,-)) if and only if, in such an orthonormal basis, its matrix
representation [U] satisfies

U] =1,

that is, it is a unitary matrix in the usual sense.
Combining this fact with Theorem II1.16, which shows that there exists an inner product with respect to which the
representation is unitary, we obtain:

Corollary ITI.17 (Any representation can be associated with unitary matrices). Let G be a finite group, and let
p: G — GL(V) be a representation on a finite-dimensional complex vector space V.. Then there exists a basis of V
such that, for every g € G, the matriz of p(g) expressed in this basis is unitary, i.e.,

p(]'[p(g)] = I.

In particular, any matrix representation of a finite group can be expressed in a basis in which all the representation
matrices are unitary. This observation will be fundamental in the development of character theory.

More generally, one may also be interested in finding a linear transformation that makes a representation unitary
with respect to a given inner product. We recall this standard linear algebra fact: If (-, -}s and (-, -) are two Hermitian
inner products on V, then there exists an operator T' € GL(V') such that

(v,w) = (Tv, Tw)g Yo,we V.
Combining this fact with Theorem II1.16, we obtain:

Corollary II1.18 (Every representation is equivalent to a unitary one for any inner product). For any Hermitian inner
product (-,-) on V, every finite-dimensional complex representation p : G — GL(V) is equivalent to a representation
that is unitary with respect to (-,-). In other words, there exists an invertible linear map T € GL(V') such that

p(g)=T""p(g)T
is unitary with respect to (-,-) for all g € G.

Proof. By Theorem III.16, there exists an inner product (-,-)¢ with respect to which p is unitary. Now, let (-,-) be
any other Hermitian inner product on V. By the standard fact stated above, there exists an invertible operator T
such that (v,w) = (Tw,Tw)q for all v,w € V. Define the new representation p/(g) == T 'p(g)T. For any v,w € V
and any g € G, we compute:

Tp' (9w, Tr' (9Iw)e
p(g)Tv, p(g)Tw)g (by definition of p)

(' (g)v, p' (g)w) = (
=
= (Tv,Tw)g (since p is unitary w.r.t. {(-,")g)
=<

v, W).
Thus, p’(g) is unitary with respect to (-,-) for every g € G. O

C. Schur’s lemmas

One of the most important tools in representation theory is provided by Schur’s lemmas. To motivate these results,
let us consider the following physical scenario.
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Suppose we have a Hamiltonian H that is invariant under a symmetry group G. Formally, this means that there
exists a unitary representation U : G — U(V') such that

UlgHU(9)' = H <  [U(9),H =0, VgeG. (25)

We have already seen that any representation U admits a particularly convenient block-diagonal form: there exists
a change of basis W such that, for every g € G,

T

WU(Q)WT = @ (Imq ®pi(g))a (26)

i=1

where p; are pairwise non-isomorphic irreducible representations of G, m; are their multiplicities, and dim(V;) = dim p;
is the dimension of the carrier space of p;.

Because H commutes with all such block-diagonal matrices U(g) simultaneously, this imposes a strong constraint
on H. As we shall see, this constraint is precisely characterized by Schur’s lemma: in the same basis W that
block-diagonalizes the representation U, the Hamiltonian H is transformed into H' = WHWT of the form

dim(V;)

H = P (A @ Iaimvi) = D 1ii| @ A ® Igimvyy = DM@ A | Y [b)bl ],
i=1 i=1 i=1 b=1
where A; is a Hermitian matrix acting on the multiplicity space of dimension m;, and Igim(v,) = gi:rrll(vi) |b)b] is the

identity on the carrier space of the irrep p;.
m;

This result has two immediate consequences. First, if {E](Z) j—1 are the eigenvalues of the Hermitian matrix

A; € C™iX™i - each EJ@ gives rise to a dim(V;)-fold degenerate eigenvalue of H’', with corresponding eigenvectors
{ne|ED) o) [1<j<m, 1<b<din()},

, are eigenvectors of A;, and {|b) gi:ni(m) is an orthonormal

where |i) labels the irrep (symmetry) sector, {‘EJ(Z)> m
basis of the carrier space V; of the irrep p;.

Second, the diagonalization of H is greatly simplified: instead of diagonalizing the full Hamiltonian at once, one
only needs to diagonalize the smaller Hermitian matrices A;, gaining significant computational efficiency by working
independently within each symmetry sector.

Finally, the eigenvalues of H coincide with those of H' = W HW T, while the eigenvectors of the original Hamiltonian

H are obtained by applying the inverse change of basis:
Yeas) = Wil @ [EP) o ).

To formalize and prove this structure, we now introduce the notion of intertwiners—Ilinear maps that commute with
a group action—after which we will state and prove Schur’s lemmas and then we will prove what we have claimed
above, i.e., the structure of an operator commuting with a representation.

To express this result in the most general way, we first introduce the notion of intertwiners. Schur’s lemmas will
then characterize the structure of all such intertwiners.

Definition ITI.19 (Intertwiner). Let p: G — GL(V) and p’ : G — GL(W) be two representations of a group G. A
linear map T': V — W is called an intertwiner (or a G-equivariant map) if

Tp(g) =p'(9)T,  Vge€G. (27)
We denote the space of all such intertwiners by
Homg(V,W) ={T:V = W |Tp(g) = p'(g)T for all g € G} . (28)
Before introducing Schur’s lemma, here is a small but useful lemma for Schur’s lemma.

Lemma IT1.20 (Image and kernel of an intertwiner are G-invariant). Let p : G — GL(V) and p’ : G — GL(W) be
two representations of a group G, and let T € Homg(V, W) be an intertwiner. Then both the kernel and image of T
are G-invariant subspaces:
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1. ker T C V is G-invariant, i.e.

p(g) kerT CkerT, Vge€QG.

2. Im(T) C W is G-invariant, i.e.

p'(g)Im(T) C Im(T), VgeG.

Proof. We have:
e Let |v) € kerT. Then T'|v) = 0, and for any g € G,
Tp(g) lv) = p'(9)T [v) = p'(g) - 0 =0,
so p(g) |v) € ker T
o Let |w) € Im(T'). Then |w) =T |v) for some |v) € V. For any g € G,

p'(9) lw) = p'(9)T |v) = Tp(g) |v) € Tm(T).

We begin with a fundamental special case of Schur’s lemma.

Lemma IIT.21 (Schur’s Lemma — intertwiner from an irrep to itself). Let p : G — GL(V) be an irreducible
representation over a finite-dimensional complex vector space V.. Then any linear operator T : V. — V that commutes
with all p(g),

Tp(g) = p(9)T Vg e€G,

must be a scalar multiple of the identity:
T =My, AreC.

Proof. Since V is finite-dimensional over C, the operator T has at least one eigenvalue A € C and an associated
eigenvector (this follows because the characteristic polynomial det(T — AI) has at least one root A € C by the
fundamental theorem of algebra). Let V) := {|v) € V | T |[v) = X |v)} be the eigenspace corresponding to A, which is
nonzero by definition.

Note that V) = ker(T' — Aly ). Since T commutes with every p(g), the operator T'— Al also commutes with every
p(g), hence is itself an intertwiner. So, by Lemma II1.20 (Image and kernel of an intertwiner are G-invariant), the
space V) = ker(T — Ay ) is a G-invariant subspace of V. By irreducibility of p, the only nonzero G-invariant subspace
is V itself, so V), = V. Therefore T = Ay . O

Lemma IIT.22 (Schur’s Lemma — intertwiner from an irrep to another one). Let p : G — GL(V) and p' : G —
GL(W) be irreducible representations over finite-dimensional complex vector spaces V- and W.

We write p = p' to denote that p and p' are equivalent representations, meaning there exists an invertible linear
map Ty : V. — W such that

plg) =Ty 'p'(9)To,  Vg€G.
We write p % p' to mean that they are inequivalent. Then:

o If p ), then
Homg (V, W) = {0}.
o If p==p/, then
Homg(V,W)={X-Ty | A € C},
where Ty is the intertwiner from the definition of equivalence.

Proof. Let T € Homg(V, W), i.e. Tp(g) = p'(¢g)T for all g € G. We consider two cases.
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e Case p % p/: T is an intertwiner so ker T C V and Im(7T') C W are G-invariant subspaces by lemma II1.20. Since
p and p’ are irreducible, ker T is either {0} or V, and Im(T) is either {0} or W. If kerT =V, then T' = 0. If
kerT = {0} and Im(7T") = {0}, then T'= 0. If ker T = {0} and Im(7") = W, then T is a linear isomorphism from
V to W, contradicting p % p’. Thus in all cases T = 0.

e Case p = p': Let Ty : V — W be any fixed nonzero intertwiner (which exists by equivalence). For any
T € Homg(V, W), define S == ToflT :V — V. Then S is an intertwiner from V to itself:

Sp(g) =Ty " Tp(g) = Ty 0/ (9)T = p(9)T5 ' T = p(g)S.
By Lemma II1.22 (Schur’s lemma for an irrep to itself), S = Al for some A € C. Hence T = TS = ATp.

O

Schur’s lemma reveals a remarkable rigidity of intertwiners: if two representations are irreducible, then any in-
tertwiner between them is either zero (if they are inequivalent) or uniquely determined up to a scalar (if they are
equivalent).

An immediate consequence of Schur’s lemma is the following:

Corollary ITI1.23 (Irreps of abelian groups are 1-dimensional). Let G be a finite abelian group, and p : G — GL(V)
an irreducible representation. Then dimV = 1. In other words, every irreducible representation of an abelian group
is one-dimensional.

Proof. Since G is abelian, all p(g) commute with each other. In particular, for each g € G, the map p(g) commutes
with all p(h), so p(g) is an intertwiner for the irrep p.
By Schur’s lemma, this means p(g) = AgIy for some A\, € C. So for all [v) € V and all g € G,

p(g)|v) = Ag |v) -

So for any |v) € V, the subspace span{|v)} is G-invariant. But since p is irreducible, the only G-invariant subspaces
are {0} and V/, so this is only possible if dim V' = 1. O

1. The commutant structure: what are the operators commuting with a representation?

As a consequence of Schur’s Lemma, we are now ready to prove the result mentioned at the beginning of the
previous subsection: namely, that any operator commuting with a group representation must have a very specific
block structure.

Proposition ITI.24 (Structure of operators commuting with a symmetry group representation). Let U : G — U(V)
be a unitary representation of a finite group G on a Hilbert space V, and let H : V — V be a linear operator such that

[U(g),H] =0 forallg € G. (29)

Let W be a unitary matriz that puts U(g) into its canonical block-diagonal form:

T

WU (W' =D (Im, ® pi(9)),

i=1

where p; : G — U(V;) are pairwise non-isomorphic irreps, and m; is the multiplicity of p; in U.
Then H is simultaneously block-diagonalized by the same change of basis:

T

WHW = B (4 ® Laimv;) »

i=1
where:

o A; € C"™i*™i qcts on the multiplicity space C™i,

o I4im v, @5 the identity operator on the irrep space V;.

If H is Hermitian, then each A; is Hermitian as well.
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Proof. Let W be the unitary that brings U to its canonical block-diagonal form. In bra—ket notation,
WU(@W' = 3 |i)il @ I, @ pilg), Vg€ G, (30)
i=1

where |i) labels the irrep sector, the second register is the multiplicity space of dimension m;, and the third register
is the carrier space V; of p;. Define H' = WHW 1. Since H commutes with U(g) for all g, we have

(WU(@)WHH' = HWU(@@W'), Vgeg. (31)
We now write H' in this basis as
H = > |i}jle Hjj, (32)
ig=1

where H/; act on the multiplicity and carrier spaces. Projecting the commutation relation onto sectors 4, j by applying

,

(i] and |j) on the first register gives
(Im, ® pi(9)) Hi; = Hij(Im, ® pj(9)),  Vg€G. (33)
Expand H;; on the multiplicity indices:

HYy = 3" |a)p| @ HMY, (34)

a=1b=1

where each Hga’b) is an operator mapping V; — V;. Substitute this into the commutation relation. For the left-hand
side:

a,b
(I, ® pi(9)H}; = > la)b| @ pi(g) H™. (35)
a.b
For the right-hand side:
b
HY (L, ® pi(9)) = > la)b| @ H\"" p;(g). (36)
a,b

Equating both sides and comparing the coefficients of |a)b| yields
pilg) HAY = H Y pig),  VYg€G, Va,b. (37)

Now we get:

e If i # j, the irreps p; and p; are inequivalent. By Schur’s lemma, there is no nonzero intertwiner between them,
o)
H\™" =0, Va,b, (38)
and hence H;; = 0 for i # j.

e If i = j, then p; = p;, and by Schur’s lemma any operator commuting with all p;(g) must be proportional to
the identity on V;. Therefore,

H" = (A)ap Liim(vi)s (39)
for some matrix A; € C™i*™i_ This gives
Hy =" la)b| © HY = A; @ Lgvi)- (40)
a,b=1
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Combining all blocks,
,
H' = Z [i)i] ® Ai ® Igim(vy)- (41)
i=1

If H is Hermitian, then H' = WHWT is Hermitian, which implies each A; is Hermitian. Finally, transforming back
with WT gives

H = WT(Zm(z'\ ®A¢®Idim<vi>>W, (42)
=1

as claimed. O

Corollary III1.25 (Multiplicity-free case). In the setting of Proposition I11.2/, if every irreducible representation
appears with multiplicity m; = 1, then each A; reduces to a scalar \; € C (or A\; € R if H is Hermitian), and hence

H=W (é)\ildim(m> wh = ET:)\Z-PZ-, (43)
i=1

i=1
where
dim(V;) dim(V;)
Po=w e S L)l | wh = Y Wi, w (44)
j=1 J=1

is the orthogonal projector onto the carrier space of the i-th irrep.
In this case, the symmetry completely determines the structure of H: the only free parameters are the scalars
{\i}i_y, and each \; corresponds to a dim(V;)-fold degenerate eigenvalue of H.

Remark ITI.26. Proposition I11.24 was stated for unitary representations (in order to provide more familiarity
with the symmetries one meet in quantum mechanics), but the same structural result holds more generally for any
representation p : G — GL(V). That is, if p : G — GL(V') can be block-diagonalized as

plg) =T (EB I, @ pi(g)> T
i=1

for some invertible transformation 7', then any operator H € End(V') that commutes with all p(g) must also decompose
as

H=T (@Ai ® Idimvl) T,
i=1

where each A; € End(C™) is an arbitrary linear operator acting on the multiplicity space. The proof is exactly the
same, relying only on Schur’s lemma and the block structure.

Definition II1.27 (Commutant). Given a representation p : G — GL(V), we define the commutant (or centralizer
algebra) as

Comm(p) ={H:V =V |[p(g),H] =0 for all g € G}.
That is, the set of all linear maps that commute with the group representation.

Corollary II1.28 (Dimension of the commutant). Let p : G — GL(V) be a representation of a finite group G, and
suppose it decomposes as

T
~ bm;
P = @pz )
i=1

where the p; are pairwise inequivalent irreducible representations, m; is the multiplicity of p;, and r is the number of
inequivalent irreps appearing in the decomposition. Then the commutant has dimension

dim(Comm(p)) = Z m3.
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Proof. Let T € GL(V) be a change of basis that brings p(g) into block-diagonal form:

T

To(9)T " = @B (I, @ pil9)),

i=1
where the p; are pairwise inequivalent irreducible representations, and m; is the multiplicity of p; in p. Since [p(g), H] =
0 if and only if [Tp(g)T ", THT '] = 0, we may assume from the start that

T

p(9) = D (I, ® pi(9))-

i=1

Let H : V — V be any linear map commuting with all p(g). Then H must preserve this block structure, i.e.
H = @, H;, with each H; acting on the i-th block. By Schur’s lemma (as seen in Proposition I11.24), each H; must
be of the form

H; = A; ® Ljim v;,

where A; is a linear map on a vector space of dimension m;. The space of such operators has complex dimension m?.
Summing over i, we get that the total dimension of the commutant is Y ;_, m?. O

2. Aweraging an operator over irreducible representations

We now introduce an important consequence of Schur’s lemma that we will use often in the next section. It uses
the idea of averaging over the group that we have already encountered. This idea — symmetrizing a map by group
averaging — is one of the core tricks in representation theory.

Proposition IT1.29 (Twirling over irreps). Let p1 : G — GL(V1), p2 : G — GL(V2) be two irreducible representations
of a finite group G, and let h : Vi — V3 be a linear map. Define the averaged map:

= 1al Z p2(9) " hpa(g)- (45)
geG
Then:
1. If py % pa, then h° = 0.

2. If p1 = p2 and V = Vi = Vi, then h° is a scalar multiple of the identity:

1
0= \I =——T 4
hY = Ay, with A = TmV r(h). (46)
Proof. We first observe that h° satisfies the intertwining relation:
p2(s)h? = h%py(s), Vs € G. (47)
Indeed,
p2(s) |G| 202 $)p2(9) "' hpi(g) |G| 202 )t hoi(g)
Se geq
> pa(9) thpa(gs) = Bopi(s), (48)
IGI =

where we changed variable g — gs and used that

p2(s)p2(9) " = pa(s™) T p2(g) Tt = (p2(g)pa(s™)) ™" = palgs™") .

So h¥ is a G-intertwiner. If p; % po, Schur’s lemma I gives h® = 0. If p = p; = ps and V = V; = V5, Schur’s lemma
II gives h® = A\Iy,. To compute A, take the trace:

Tr (p(g) ™" Tr( 4
= a7 2T o)™ 0ke) = 7 35 o0 = T 1)
9eG geG

by cyclicity of the trace. But also Tr(ho) =AdimV,so A = dlmv Tr(h). O
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As a corollary of the previous proposition, we get:

Corollary II1.30 (Average of irreducible representations matrix elements). Let p; : G — GL(d1,C) and p2 : G —
GL(dg, C) be irreducible matriz representations of a finite group G. Let [p1(g)]j i, and [p2(g)]ji, denote the matric
elements of p1(g) and p2(g), respectively. Then:

1. If p1 2 pa, then for all iy, j1 € {1,...,d1} and iz, jo € {1,...,d2},

|G| Z p2 1 ]22‘2 [pl(g)}]lzl =0. (50)
geG
2. If p = p1 = pa is an irreducible representation of dimension d, then for all i1, j1,12,j2 € {1,...,d},
1
|G| Z J2l2 g)}jlil = Eéizjl(sjzil' (51)
geG

In compact notation: If po and pg are two inequivalent irreducible representations of G of dimensions d, and dg,
then

1
|G| D 1palg™ Ninin[pp(9))juin = 7 9apdizji Ojaiy (52)
geG «
Proof. Define the averaged operator:
\G| Z p2(9~ " hp1(9),
geG
where h = |iz) (j1|. By Proposition I11.29, if p; % pa, then h® = 0. Taking matrix elements:
(ja| RO |i1) = |G| Z (2l p2(g~") liz) (al p1(g) lin) = |G| Z P2(9" )jaizlp1(9)]j101-

geG geG

So the left-hand side equals zero. Now suppose p; = ps = p of dimension d. Then by Proposition I11.29, we have
hO = AI, where A = 4 Tr(h). Setting h = |iz) (j1|, we compute the (jz,i1)-entry:

<]2‘ h |21 |G‘ Z .72| P |ZQ> <]1‘ p |21 |G| Z ]212 g)]jlil'
geG geG
On the other hand,
. . 1 1
(jal A% lir) = Adjpiy,  and A= 5 Tr(h) = 03,4,
Therefore,
1
|G‘ Z ]212 g)}]‘lil = g6i2j15j2i1a
geG
as claimed. O
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IV. CHARACTER THEORY

We have seen that finite-dimensional representation p of a finite group G over C can be decomposed as
Y (53
i

where the p; are irreducible and pairwise inequivalent, and m; is the multiplicity — the number of times p; appears
in the decomposition. However, many questions remain open at this point. What are these irreps? How many are
there? Could there be infinitely many? Can new ones be invented (up to isomorphism)? These questions will be
addressed in the section.

To understand and classify irreducible representations, we need a practical tool that captures how a representation
decomposes — ideally without working in any specific basis. This tool is the character of a representation.

Definition IV.1 (Character). Let p : G — GL(V) be a finite-dimensional complex representation of a finite group
G. The character of p is the function

xp: G— C, Xp(9) = Tr(p(g))-

Characters are just traces of the representation matrices, but they encode a surprising amount of information. We
will see how they allow us to detect irreducibility, distinguish non-isomorphic representations, compute multiplicities,
and ultimately prove that the number of inequivalent irreducible representations of a finite group equals the number
of its conjugacy classes — and is therefore finite. At first glance, this may seem surprising: a character assigns a
single complex number to each group element, whereas a representation assigns a full matrix.

Remark IV.2 (Basis independence and spectral meaning). The character function x,(g) = Tr(p(g)) encodes spectral
information in a basis-independent way:

e Basis independence: The trace of a linear operator is invariant under change of basis. So the character is
well defined — it does not depend on how p(g) is represented as a matrix.

e Unitary form: From Corollary I11.17, we know that for any finite-dimensional representation of a finite group,
we can always pick a basis in which all the p(g) are unitary matrices. In that case, all eigenvalues lie on the
unit circle — they are roots of unity.

e Spectral interpretation: The trace equals the sum of the eigenvalues of p(g), counted with multiplicity:

dimV

Xp(9) = Tr(p(9)) = D A
i=1

More generally, the character determines all power sums of the eigenvalues:

dim V'
Xo(9%) = Tr(p(g")) = Tr(p(9)*) = D AF.
=1

Thus, characters give us all eigenvalues power sums as stressed in the previous remark — which strongly constrain
the eigenvalues. Since two unitary matrices are unitarily equivalent if and only if they have the same eigenvalues, the
fact that characters can detect so much structure (such as testing if two representations are equivalent) becomes less
surprising — and highlights why they are so powerful.

A. Basic properties of characters

We begin by collecting some basic facts about characters. These follow easily from the definitions but already reveal
useful structure.

Lemma IV.3 (Basic properties of characters). Let p: G — GL(V) be a finite-dimensional complex representation of
a finite group G, and let x, be ils character. Then:

1. Class function: For all g,h € G,

Xp(hgh™") = x,(9).
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2. Additivity: If p = p1 @ p2, then
Xp = Xp1 + Xps-

3. Value on inverses: For all g € G,

4. Value at the identity:
Xp(e) =dim V.
5. Trivial representation: The character of the trivial representation is
Xtrin(9) =1 forallg € G.

Proof.
1. The first point follows by noting that p(hgh™') = p(h)p(g)p(h)~! and by ciclicity of the trace.

2. The trace of a block-diagonal matrix is the sum of the traces of its blocks:
Tr(p1(g) ® p2(9)) = Tr(pa(g)) + Tr(p2(9))-

3. Every finite-dimensional representation of a finite group is equivalent to a unitary representation (Corol-
lary II1.17). So we can choose a basis in which each p(g) is a unitary matrix. In that basis, the matrix of
p(g1) satisfies

Thus, we get

4. Since p(e) = Idy, we have x,(e) = Tr(Idy) = dim V.
5. The trivial representation maps every group element to the scalar 1, so its trace is always 1.

O

This first point tells us that characters are a special kind of function on the group, called class functions. (We will

later see that the characters of irreducible representations form an orthonormal basis for the space of class functions
on G.)

Definition IV.4 (Class function). A function f : G — C is called a class function if it is constant on conjugacy
classes:

f(hgh™') = f(g)  forall g,h € G. (54)
The set of all class functions on G is denoted
Funcass (G, C) = {f € Fun(G,C) | f(hgh™") = f(g) Yg,h € G}.
Equivalently, f is a class function if and only if f(gh) = f(hg) for all g,h € G.?

Lemma IV.5 (Dimension of function spaces). Let G be a finite group. Then:

1. The space Fun(G,C) of all functions f : G — C has dimension |G|.

2 The condition f(h~1gh) = f(g) for all g,h € G is equivalent to f(sh) = f(hs) for all s,h € G, as follows by setting s = h~1g.
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2. The subspace of class functions Funciass(G, C) has dimension equal to the number of conjugacy classes of G.

Proof. (1) A function f : G — C is determined by its values on each g € G. The set {d,}4eq, where d4(h) = d41,
forms a basis: they span the space and are linearly independent. Indeed, for any f : G — C, we can write f(:) =
> gec f(9)d4(), so {dg}gec generate the space. If 3 ;g dy(-) = 0 as a function, then evaluating at h = go forces
ag, = 0 for all gg € G, proving linear independence. Thus, dim Fun(G,C) = |G|.

(2) If f is a class function, then f(g) = f(hgh™!) for all g,h € G. Hence f is determined by its values on the
conjugacy classes of G. A basis is given by the indicator functions d¢ of each conjugacy class C', defined by

1 ifgeC,
6c<g>:={ y="=

0 otherwise.

The fact that these functions form a basis is proven as above, so the dimension of Fun j.ss(G, C) equals the number
of conjugacy classes. O

We now equip the space of complex-valued functions on G with a natural inner product.
Definition IV.6. Let ¢, ¢ : G — C be functions on a finite group G. We define their inner product as
W.9)e =15 G‘ > (g (55)
g€G
We now verify that this is indeed a valid inner product, and show how the formula simplifies for class functions.
Lemma IV.7 (Inner product on functions on G).
e The function {-,-)¢ defines a Hermitian inner product on the space of functions G — C.
e Moreover, if 1 and ¢ are class functions (i.e., constant on conjugacy classes), then the inner product reduces to

<¢,¢>Gfﬁ S 101 (o), (56)
CeCl(G)

where the sum runs over the conjugacy classes of G, and ¢ € C is any representative.

Proof. For the first point, we verify the three defining properties of a Hermitian inner product. Let ¥, ¢,x : G — C
and A, Ay € C.

1. Conjugate symmetry:

*

¥)a = ‘G‘Zaﬁ = ‘G|Zw = (1, 0)-

geG geG
2. Linearity in the second arqument:
(¥, Mo+ XX |G| > w(g)* (Md(g) + Aax(g)) (57)
geG
= /\1<w7¢>G+)\2<¢7X>G- (58)

3. Positive definiteness:
(W, ¢)a = a Z 4(g)
1G] =
with equality if and only if ) = 0.

For the second point, suppose 1 and ¢ are class functions. Since they are constant on conjugacy classes, we can
group the sum accordingly:

(¥, 9)a

S g X Lo =g X Il )

cem (@) geC CeCIQ)

where ¢ € C' is any fixed representative. O
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Using the inner product on functions f : G — C introduced in the previous section, we now state an important
orthogonality result about the matrix elements of (unitary) irreducible representations — often called the Schur
orthogonality relations for irrep matrix elements.

Theorem IV.8 (Matrix elements of irreducible representations are orthogonal). Let py, pp be two irreducible rep-
resentations of G, of dimensions d, and dy, respectively. Select a basis in which the matrices pq(g) and py(g) are
unitary for all g € G (this is always possible because of Corollary II1.17). Then for all i1,51 € {1,...,d,} and
ia,jo € {1,...,dp}, we have:

<[pa(g)]i1jl7 [pb(g)]i2j2>G = i

In particular, in such a unitary basis the matriz elements of irreducible representations form an orthogonal set in
the Hilbert space Fun(G, C) of complexz-valued functions on G. The total number of these orthogonal functions is

>

pa€CG

5ab (51'11'2 6j1j2 . (59)

where the sum runs over the set G of all inequivalent irreducible representations of G, and d, = dim(p,).

Proof. This follows from the matrix element orthogonality formula (Corollary I11.30) established earlier. There, we
showed:

1
@ Z pa(9™ )] 1,0, [Po(9))5, = a5ab5igjl5j2il~

geG

Using that p,(¢71) = pa(g)* — which holds if we assume (as we can) that the matrices p,(g) are unitary, by
Corollary I11.17 — and recognizing the inner product between matrix elements, we get:

1
<[pa(g)]i1j1a [pb(g)]izjz el |G| Z pa 1131 Pb( )]ing = I§Gb5i1i25j1j2'
g€eG @

O

This raises a natural question: do the matrix elements of irreducible representations span the entire space of
functions f: G — C?

We've seen that there are exactly Zpe@ dim(p)? orthonormal functions coming from irreducible representations
matrix elements. On the other hand, we’ve already established that the space of all complex-valued functions on G
has dimension |G| (in Lemma IV.5).

Do these two numbers match? Spoiler: yes. We’ll prove this in the next sections. It will show that the matrix
elements of irreducible representations actually form an orthonormal basis for the space of functions f : G — C.

You might have already seen a (continuos group) version of this in disguise — for instance, in quantum mechanics:

spherical harmonics form an orthonormal basis of the square-integrable functions on the sphere, and they arise as the
matrix elements of irreducible representations of SO(3).

B. The Grand Orthogonality Theorem: orthogonality of irreducible characters

In this section we explore some of the most fundamental consequences of character theory. We begin with a
cornerstone result: the characters of inequivalent irreducible complex representations form an orthonormal set with
respect to the standard inner product on functions over a group. This result is known as the Grand Orthogonality
Theorem (GOT), also referred to as the First Orthogonality Relation for Characters, or the First Schur Orthogonality
Theorem.

Theorem IV.9 (The Grand Orthogonality Theorem: Orthogonality of irreducible characters). Let x,,, X, : G = C
be the characters of two irreducible complex representatz’ons of a finite group G. Then

<XpaaXpb = |G| Z Xp,, Xpb g) = 5a,b7
geaG

where 8q.p equals 1 if po = pp, and 0 otherwise.
That is, the characters of distinct inequivalent irreducible representations are orthogonal with respect to the chosen
inner product and so they form an orthonormal set of class functions.
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Proof. This follows from Theorem IV.8, which established that if p,, pp are irreducible representations of G of dimen-
sions d, and dj, then for all matrix elements:

1
<[Pa(g)]i1j1a [pb(g)]i2j2>(; = difsab (siliQ 6j1j2'

a

We set j1 = i1, jo = 9, then sum over 4; and is. This gives

de dp da
1
<Xpa7Xpb>G = § E <[,0a}i1i17 [pb]i2i2>c = jéab g 1= 5ab
i1=1ia=1 @ i=1

O

From the previous corollary, we deduce the following: characters let us tell whether two irreducible representations
are equivalent or not.

Corollary IV.10 (Testing equivalence of irreducible representations using characters). Let p, and py be irreducible
representations of a finite group G, with characters x,, and x,,. Then

Pa=pp = Xpo =Xow = XpwrXpp)a =1

Proof. If pq = py, then they are equivalent, so their characters are equal: x,, = Xp,-
If Xp, = Xps, then by the orthogonality relations for characters shown above we have

(Xpas Xps)G = (Xpar Xpa )& = 1.
Now suppose that (x,.,Xp,)¢ = 1, then if p, 2 pp, by orthogonality of irreducible characters we should have
<XpaaXpb>G = 07
a contradiction. So pg = pp. O

We will shortly generalize this result, by showing that any two representation (possibly reducible) are equivalent if
and only if they have the same character. From now on, we use the shorthand term irreducible characters to refer to
the characters of irreducible representations.

Remark IV.11. Let G be the set of inequivalent irreducible complex representations of G. From the orthogonality
of irreducible characters (Theorem IV.9), the set

{x»:AeG}

is orthonormal in Fung,ss(G, C). In particular, the irreducible characters are linearly independent because they are
orthonormal, so

|G| < dim Fungjas (G, C) = #{conjugacy classes of G}, (60)

a finite number for finite G. We will later prove the reverse inequality (in fact, equality) by showing that irreducible
characters span Fung.s(G, C), thereby establishing that the number of inequivalent irreducible representations equals
the number of conjugacy classes.

Recall that by Maschke’s theorem, any finite-dimensional representation p : G — GL(V) of a finite group G
decomposes as a direct sum of irreducible representations:

p= P o™,

\e@

where G denotes a complete list of inequivalent irreducible representations of G, and m) € N is the multiplicity of p)
in p, i.e., the number of times p) appears as a direct summand. In terms of characters, this decomposition reads

Xp = D maXa- (61)
re@

We now show that these multiplicities are entirely determined by the character x,, and can be computed using
inner products.
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Theorem IV.12 (Multiplicity formula via characters). Let p: G — GL(V) be a finite-dimensional representation of
a finite group G, with character x,. Let px be an irreducible representation with character xx. Then the multiplicity
of px in p is given by

<Xan)\ |G‘ Z X,o

geqG

Proof. We write the decomposition:

p= P ™, so x, =Y maxa

€@ @
Taking the inner product with x,, we find:
Xp)Xu ka X)uXu = My,
\e@G
since (xx, Xu)c = 0, by orthogonality of irreducible characters. O

Therefore, the multiplicity of each irreducible representation in p is completely determined by the character x,, and
in particular is independent of how we write the decomposition. This implies the uniqueness of the decomposition
into irreducibles, up to isomorphism and reordering.

Corollary IV.13 (Uniqueness of decomposition into irreducibles). Let p : G — GL(V) be a finite-dimensional
representation of a finite group G. Suppose p admits two decompositions into irreducible subrepresentations:

p= P, (62)
=1

o= Do, (63)
j=1

where each p; and o; is irreducible.
Then r = s, and there exists a bijection w: {1,...,r} = {1,...,s} such that

pi = o) for all i.

That is, the multiset of irreducible summands in p, counted with multiplicity and up to isomorphism, is uniquely
determined by the character x,.

Proof. From the multiplicity formula,

my = <Xp7X>\>G7

we know that the number of times any irreducible representation p) appears in the decomposition of p depends only
on X,, and not on the choice of decomposition.

Therefore, each irreducible py appears the same number of times in both decompositions, which implies that the
two lists {p1,...,pr} and {o1,...,05} must be the same up to permutation and isomorphism. O

We now show that two representations are equivalent if and only they have the same characters (generalizing what
we saw earlier for irreducible representations).

Corollary IV.14 (Testing equivalence using characters). Let p, o be two finite-dimensional representations of a finite
group G, with characters x, and X, respectively. Then

Xp = Xo = p=o.

Proof. If p = o, then they are equivalent representations, so their characters are equal: x, = X, since trace is
invariant under change of basis.
Conversely, assume X, = Xo. By the multiplicity formula, for any irreducible representation pj,

<Xp7X/\>G = <XU7X/\>Ga

so p and o contain the same irreducible representations with the same multiplicities. Hence, their decompositions
into irreducibles are equivalent (up to isomorphism and ordering), which implies p & o. O
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Remark IV.15. That two equivalent representations have the same character is obvious: they are related by a
change of basis, so their matrices are conjugate, and in particular have the same trace on each group element. What
is not obvious is the converse — that if two representations have the same character, they must be equivalent. This
is a nontrivial and powerful consequence of character theory.

To appreciate this, note that two matrices with the same trace need not be similar. For example,

() -

both have trace 2 (and even the same eigenvalues), but they are not similar (equivalent): there is no invertible matrix
S such that SAS~! = B. (Indeed, they are already in Jordan canonical form — and their Jordan structures differ,
so they are not similar 3.)

So, while trace equality does not determine matrix equivalence in general, it does determine equivalence of repre-
sentations — provided we compare the trace Tr(p(g)) for every group element g € G.

We now introduce a useful formula relating the character of a representation to its multiplicities.

Lemma IV.16 (Norm of a character equals equals the sum of squared multiplicities). Let p : G — GL(V) be a

finite-dimensional representation of a finite group G, with character x,. Suppose p =P, a p?mk, where G is the list
of all inequivalent irreducible representations. Then the squared norm of x, equals the sum of squared multiplicities:

<Xanp |G| Z |Xp = Zmi
9eG xe@G
In particular, (x,, X,) it is a positive integer.
Proof. We have:
Xp = Z MAXA-
re@

Taking the inner product with itself and using orthonormality of the irreducible characters:

<X,07Xp <Z m)\X)\7Zm;LXM> Zm)\mp X/\7XM ka’

A

since (Xx, Xp)& = Oapu- O

This gives us a remarkably efficient test for irreducibility:

Theorem IV.17 (Testing irreducibility using characters). Let p : G — GL(V) be a finite-dimensional representation
of a finite group G, with character x,. Then p is irreducible if and only if

(Xps Xp)g = 1.

Proof. From the previous lemma, we know that

(Xo»Xp)g = Zm?\,

A

where m) € N are the multiplicities of irreducible representations in the decomposition of p.

If p is irreducible, then there is a unique A such that my = 1 and all others vanish, so the sum is 1.

Conversely, if the sum equals 1, then only one m) can be nonzero and equals 1, which means p is isomorphic to an
irreducible representation py, hence irreducible. O

3 Over C, two matrices are similar if and only if they have the same Jordan block structure.
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C. Examples and applications

We have seen a simple and effective criterion to check whether a representation is irreducible. Previously, to verify
irreducibility, especially for higher-dimensional representations, one had to search for proper invariant subspaces — a
process that could be computationally involved. Now, we have a concrete method:

p is irreducible <= (x,, Xp)a =1.

We see now an example.

Example I'V.18 (Standard representation of S3). Let p : S3 — GL(C?) be the permutation representation acting on
the basis {|0),|1),|2)}, defined by

Equivalently, in operator form:

We want to decompose this representation into irreducibles.
e Step 1. The vector |v) =|0) + |1) + |2) is invariant under all permutations:
p(o) |v) = 10(0)) + 10 (1)) +|(2)) = 10) +[1) +[2) = [v) .
So C |v) carries the trivial representation.
e Step 2. Define the 2-dimensional orthogonal complement subspace
W :={al|0)+b[1)+c|2) |a+b+c=0}.
This is also an invariant subspace, since it is orthogonal to an invariant subspace.

e Step 3. Note that the character of the permutation representation x, = Tr(p(c)) = Z?:o (ilo(i)) counts the
number of fixed points of o:

3 one,
Xp = 41 on transpositions,
0 on 3-cycles.

e We have x, = Xtriv + Xw. But, the trivial character is constantly 1, so subtracting we get:

2 on e,
XW = Xp — Xtriv = 4 0 on transpositions,
—1 on 3-cycles.

e Compute the inner product:
1 2 2 2 1
xw, xw) = 75(1-2 +3-0°42-(-1)7) = fi(4+0+2) =1

So p|w is irreducible.

e Conclusion. The permutation representation decomposes as

P = Ptriv &) Pstd

where psta := p|w is an irreducible 2-dimensional representation of Ss, called the standard representation.
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Remark IV.19. We saw that another representation of Ss is the sign representation pgen, defined by

(o) +1 if o is even,
sgnl0 ) = . .
Psg —1 if o is odd.

This is a 1-dimensional representation, and hence irreducible.

We also observed in the previous example that it does not appear in the decomposition of the permutation repre-
sentation p, i.e., we saw that p = piiv @ psta- Thus, the sign representation has multiplicity zero in the permutation
representation, as one can also check from the formula

(1-3-143-1-(— )+2-o-1)=é(3—3+0)=o.

CTJ\»—~

<Xansgn = Z Xp ngn ) =
9653

1. Commutant dimension via norm of the character

Recall that the commutant (or centralizer algebra) of a representation p : G — GL(V) is the set of all linear
operators on V' that commute with the action of the group:

Comm(p) ={T:V =V | Tp(g) = p(g)T for all g € G}. (64)

Proposition IV.20 (Dimension of the commutant via character norm). Let p: G — GL(V) be a finite-dimensional
representation of a finite group G, with character x,. Then the dimension of its commutant is given by

dim (Comm(p)) = (% Xo)c = 757 =3 (o) (65)
geG

Proof. By Corollary I11.28, we have

dim(Comm(p)) = Z m3, (66)
pYtel

where m) are the multiplicities of the irreducible representations py in p. On the other hand, Lemma IV.16 states
that

Xp7 Xp Z m/\ (67)

pYte]

Combining the two gives the result. O

Remark IV.21 (Frame potential). In quantum information theory, this quantity also appears under the name of the
frame potential, particularly when studying the representation U®* : G — U(d"), where U : G — U(d) is a unitary
representation of a finite group G.

In that case, the character of the tensor power representation is

xver(9) = Tr(U(9)®*) = (Te(U(9)" = (xu(9)"- (68)

Therefore, the dimension of the commutant becomes

dim (Comm(U®*)) |G\ Z |Tr(U (69)

geG

This expression appears frequently when analyzing how well a set of unitaries mimics the statistical properties of the
Haar measure—the theory of unitary k-designs.
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2. Projecting onto the the trivial isotypic component

As we saw earlier, among the irreducible representations of a group G, there is always a particularly simple one: the
trivial representation pyiy : G — GL(C), defined by

Piv(g) =1 for all g € G.

Given any representation p : G — GL(V), one may be interested in isolating the subspace on which p acts triv-
ially—that is, the isotypic component corresponding to pgiv- As we now show, this can be achieved by a simple
averaging trick (we will later generalize this result to any isotypical-components).

Lemma IV.22 (Averaging projects onto the trivial isotypic component). Let p : G — GL(V') be a finite-dimensional
representation of a finite group G, with character x,. Define the averaging operator:

iy = |G| Z

geqG
Then:
1. My is a G-equivariant projection: 12, = Wiy, and p(h) iy = givp(h) = iy for all h € G.
2. The image of My is the fized subspace
G ={veV:plgw=ur foralgeG}.

3. In the decomposition of p into irreducible components:

@ péamx

e@

where G denotes the set of irreducible representations of G, the fized subspace V& coincides with the subspace
C™eiv o where p acts as the trivial representation. That is,

VG o~ Cmwiv,
where myyiy 18 the multiplicity of piriv in p.
4. This multiplicity is given by the character inner product:

Mtriv = <Xp7Xtr1v a = |G‘ Z Xp
geG

5. If p is unitary, then Iy is self-adjoint: T, = il

triv -

Proof. We prove point by point.

1. We have:
2

tI’lV: ‘Gl Z |G|2 Z |G|2 Z gh

geG g,heG g,heG
1
= S (S = T = S 0 = T
keG \yeG keG keG
where we changed variables k = gh. So 112, = Iliiy.

Moreover, for all h € G,

( Htrlv = |G| Z hg 1| Z P(g/) = Htriv7

geqG 9'eG

where we changed variable ¢’ = hg. Similarly Iiyp(h) = Hiyiy, S0 iy is G-equivariant.
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2. Let v € Im(Ttyiy ), 80 v = Iy (w) for some w € V. Then for any h € G,
p(h>'U = p(h)Htriv(w) = Htriv(w) =",

sov € V& and thus Im (L, ) € VE.
Conversely, if v € VY, then p(g)v = v for all g € G, hence

Htrlv |G| Z
geqG
and v € Im(ILiy ), so VE C Im(Ilgy4y ). Therefore, Im (T, ) = VE.

3. By Maschke’s theorem, we may write

V=i,

xe@

where each V) is the irreducible representation space of py. The fixed subspace V& consists only of vectors
invariant under p(g) for all g, and this happens only in the trivial representation. Thus,

VG o v

where myyy is the multiplicity of pyy in p.

4. We compute the multiplicity using the character inner product:
1 Y
Miriv = <Xp7Xtr1v a = G Z Xp G Z Xp G Z Xp
|Gl | : e | : e =

since xuiv(g) =1 for all g € G.

5. If p is unitary, then p(g)" = p(g~!) for all g € G. Thus,

¥

_ _ 1 P L -
trlv - |G| Z |G| quGp(g) ‘G‘ qesz(g |G‘ Z Htr1v7

geG

1 is a bijection of G. Hence Iy, = il

triv®

since g — g~

O

Example IV.23 (Projector on the symmetric subspace). In quantum information theory, this averaging operator
often appears in the context of the symmetric subspace of (C?)®* defined as the subspace of tensors invariant under
all permutations:

Sym*(C?) := {[v) € (CH®* | V(x) [1) = [¢) for all m € Sy }.
Here, the symmetric group Sj acts on the tensor power space via the unitary representation

ViSe=U@d),  V(n) (i) ® - ®lin) = liz-10)) @ @ [ir-10zy) -

The orthogonal projector onto the symmetric subspace is given by

Poym = vZV

k! TESk

which is precisely the averaging operator over the group action, and a special case of the lemma above.
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D. The regular representation contains them all (the irreps)

Let G be a finite group. We recall that the regular representation of G is the representation
preg : G = GL(V),  V =span{lg) | g € G},
defined by left multiplication:
preg(9) |R) = |gh), for all g,h € G.
This is a faithful representation, meaning that it is injective as a group homomorphism. That is:

Definition IV.24 (Faithful representation). A representation p : G — GL(V) is called faithful if the only group
element that acts trivially on all of V' is the identity, i.e., kerp = {g € G | p(g) = Iv} = {e}.

In other words, p is faithful if it embeds G into the group of invertible matrices, preserving the full group structure.
The regular representation is always faithful. Indeed, if g # e, then preg(g) l€) = |g) # le), so g & ker preg. Thus,

Ker preg = {e}. *
We now compute the character of the regular representation.
Lemma IV.25. The character Xreg of the regular representation satisfies:

Xreg(g) {|G| ifg= 6',

0 otherwise.

Proof. By definition, we have:

Xreg(9) = Tr(preg(g Z Tr(lghXhl) = Z Ogh,h = Z Og.e = 0g.e|G

heG heG heG

O

Proposition IV.26 (The regular representation contains them all). The regular representation contains every irre-
ducible representation of G. In particular, the multiplicity of any irreducible representation is equal to its dimension:

d
Preg = @ D ml(P/\)

re@

where G is the set of all irreducible representations of G. Equivalently, for each A\ € @, the multiplicity my of px
satisfies my = dim(py).

Proof. By the character inner product formula, the multiplicity my of py in preg is
my = <Xreg7X/\ |G| Z Xreg )
geG
Using the formula for X,z from the previous proposition, only g = e contributes, giving

1

@ |G| - xx(e) = xa(e) = dim(py).

my =
From the previous proposition, we get the following:

4 However, being faithful does not mean surjective: preg(G) is a proper subgroup of GL(V), consisting only of permutation matrices
acting on the basis {|g)}.
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Corollary IV.27 (Weighted character sum and dimension sum rule). For every g € G,
1
— d =0dg.c, 70
G o) =4, (70)

where xx(g) is the character of the irreducible representation py, and dy = dim(py).
In particular, at g = e this reduces to the so-called dimension sum rule:

Gl =) d3. (71)
xe@
Proof. From the decomposition of the regular representation (Proposition IV.26), we get
Xeex(9) = Y drxa(9). (72)
el

By Lemma IV.25, Xreg(9) = |G|dg. Dividing both sides by |G| yields the stated identity. Setting g = e gives
xx(e) = dy and hence the dimension sum rule. O

Remark IV.28. A practical use of the dimension sum rule is as a completeness test when classifying irreducible
representations. After finding several inequivalent irreps py,,...,px, with dimensions dy,,...,d,, one can check
whether the list is complete by verifying

a3, +-+d3, =G| (73)

If the equality holds, then no further irreps exist (up to isomorphism); if it fails, some irreps are still missing.

E. Matrix elements of irreps as an orthonormal basis for functions on a group

We now return to the question raised after Theorem IV.8: do the matrix elements of (unitary) irreducible repre-
sentations span the entire space of complex-valued functions f : G — C?

Let G denote the set of equivalence classes of irreducible complex representations of G. For each \ € @, let
px: G — GL(Vy)

be a representative irreducible representation, and set dy := dim V). Once a basis of V) is fixed (in such a way that
the associated representation matrices are unitary), the matriz elements of py are the functions

p()ij:G=C, g [palg)];, 1< <dx. (74)
These are simply the coordinate functions of the matrices representing py(g) in the chosen basis.

Theorem IV.29 (Finite-group Peter-Weyl theorem: matrix elements form a basis). The set of elements of the
(unitary) matrices assoicated to the inequivalent irreducible representations,

{pr()iy | A€G, 1<4,j<dy},
forms an orthonormal basis of Fun(G, C) with respect to the inner product
1 *
(fihe = @ Z f(9)" h(g).
geG

In particular, every function f: G — C admits the unique expansion

flo)=> 2 cxij PA(9)ij (75)

AeG 1g=1

where the coefficients are given by

exig = da (pa()ij» [ (76)
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Proof. By Theorem IV.8, the matrix elements satisfy

1
O ings Pu(inga ) = o Oxp Oiyiy O ja - (77)

Thus they are orthogonal (and become orthonormal upon rescaling by +/dy if desired), hence linearly independent.
The total number of these functions is
> (78)

xe@

By the dimension sum rule (Corollary IV.27),

Z 3 = ‘G|7

Ae@

which is exactly the dimension of Fun(G,C) (Lemma IV.5). We therefore have an orthogonal set whose size equals
the dimension of the space, so it must be an orthonormal basis. The formula for the coefficients follows immediately
by taking the inner product of f with py(-);; and using the orthogonality relation of such matrix elements. O

Remark IV.30 (Connection with the Fourier transform on finite groups). Theorem IV.29 has the same form as a
Fourier expansion of f over a “Fourier-like” basis of functions on GG, namely the matrix elements of its irreducible
representations. This is no coincidence: in a later section we will see that the coefficients cy ;; are precisely the
(nonabelian) Fourier coefficients of f, and that the expansion above is exactly the inverse Fourier transform on G,
generalizing the familiar discrete Fourier transform (DFT) and its quantum version (QFT).

F. Irreducible characters as an orthonormal basis for class functions

We have seen that the matrix elements of irreducible representations form an orthonormal basis of Fun(G,C). We
now show that irreducible characters form an orthonormal basis of the subspace of class functions. A useful preliminary
fact is the following lemma, which describes the effect of summing the matrices of a representation against a class
function.

Lemma IV.31 (Action of a class function on a representation). Let f: G — C be a class function, and let p : G —
GL(V) be a representation of dimension d,. Define

Pi(p) == flg)plg) € Chxb.

geG
Then:
1. Pr(p) commutes with p(h) for all h € G.
2. If V is irreducible, then
1 G|, ..
Pf(P):)\pIV, )\p:diz.f(g)Xp(g>:d7<f 7Xp>G-
P geG 14

8. If p is reducible with decomposition
p= P ri™ =P Um, @pa),
pYel re@

then

Pf(p) = @ )‘P,\I;.i\mA = @ Aoy (Lm, ®Ipx)’
re@ \e@

where \,, is given by the formula in (2).
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Proof. We have:
1. For any h € G,

p(h) P (p) =Y fg) plhgh™) =" f(hgh™") p(hgh™) = > f(g) Ps(p), (79)

geG geq geq
using that f is a class function and relabeling ¢’ = hgh ™.
2. If V is irreducible, then by Schur’s lemma any operator commuting with p is a scalar multiple of the identity:
Pi(p) = A, Iv.

Taking traces gives

dp X =Tr (Pr(p)) = Y £(9) Tr (p(9)) = > f(9) Xo(9), (80)

geqG geqG

hence

N = di > 19 xelg) = zl (" Xo)a-

P geq
3. Writing p = @, ca(lm, ® pa);

=Y 1(9) B Tmy @ pa(9) (81)

geG AeG

=B D 1) (In, @ pal9)) (82)
A geG

—@Imk ® Y flg)oalg (83)

geG

= @ Iy © Py (p) (84)
A

- @ Ty @ Apy I, (85)
y

- @ /\PA (ImA & IPA)? (86)
A

where the fourth line applies part (2) to each py.

Theorem I'V.32 (Characters as an orthonormal basis of class functions). The characters of all inequivalent irreducible
representations form an orthonormal basis of Funcjass(G, C) with respect to the inner product (-, -)q.

Equivalently, for all inequivalent irreducible representations p,o € G,

<Xp7XU>G = 6/),0’7 (87)
F9) =Y {Fxo)axol9), V¥ f € Funga (G, C). (88)
peé

Proof. Irreducible characters are class functions by definition, and Theorem IV.9 shows they are mutually orthogonal,
hence they form an orthonormal set in Fung,ss(G, C). It remains to prove they span this space.

Assume, towards a contradiction, that there exists a nonzero f € Fungpss(G,C) orthogonal to all irreducible
characters:

(fixe=0 Vied. (89)
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Let f = f*. By Lemma IV.31, for any representation p decomposed as
= P, (90)
\e@
the operator
=Y fl9)r(g)
geG

takes the form

where

1G] G

APA - dpx <(f) >G = a <f7 XP)\>G = 0. (91)

Thus P];(p) = 0 for all p. Applying this to the left regular representation

Preg * G — GL(SpanC{|g>}g€G)7 preg(h) |g> = |hg> )
we find for all |h):

0= preg |h Z f Preg |h> = Z f(g) |gh> = Z f(gh71

geG geG geqG

Taking the overlap with (s| gives f(sh’l) =0 for all s,h € G, hence f =0. So f = (f)* = 0, a contradiction.
Therefore, the orthogonal complement of {xx},.a in Fungass(G,C) is {0}, so the irreducible characters span the
space. Combined with orthonormality, they form an orthonormal basis. O

1. Number of conjugacy classes equals the number of inequivalent irreducible representations

The following theorem establishes a fundamental numerical relation in the representation theory of finite groups:
the number of inequivalent irreducible representations is exactly the number of conjugacy classes. In particular, every
finite group has only finitely many inequivalent irreducible representations.

Theorem IV.33 (Number of conjugacy classes equals the number of inequivalent irreducible representations). The
number of of inequivalent irreducible complex representations of a finite group G is equal to the number of conjugacy
classes of G:

#{inequivalent irreducible representations of G} = #{conjugacy classes of G}.

Proof. Let G denote the set of inequivalent irreducible complex representations of a finite group G. By Theorem V.32,
the irreducible characters {x, : p € G} form a basis of Funciass(G, C), hence #G = dim Fungjass(G, C). Lemma IV.5
states that this dimension equals the number of conjugacy classes, proving the claim. O

As an immediate corollary of the previous result, we see that a finite group must have a non-trivial structure in
order to possess irreducible representations of dimension strictly larger than one: the group must be non-abelian.

Theorem IV.34. A finite group G is abelian if and only if every irreducible complex representation of G has dimension
1.

Proof. (=) If G is abelian, all irreps are 1-dimensional. This was already established earlier (see Corollary I11.23),
by using Schur’s Lemma.

(<) If all irreps are 1-dimensional, then G is abelian. By the dimension sum rule (Corollary IV.27),

Gl=)_d.

peG
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By assumption d, = 1 for all p € é, SO

Gl =Y "1=1G].

pE@

By Theorem 1V.33, |§| equals the number of conjugacy classes of G. Thus G has |G| conjugacy classes. Since
conjugacy classes are disjoint and their union is G, each class must have size 1. Therefore every element is only
conjugate to itself, meaning hgh~! = g for all for all g, h € G. Hence hg = gh for all g,h € G, and G is abelian. [

G. The second orthogonality relation for irreducible characters

The first orthogonality relation (Theorem I'V.9) shows that distinct irreducible characters are orthogonal as functions
on GG with respect to the standard inner product. The second orthogonality relation is a complementary statement:
it shows that, if we fix a conjugacy class and look at the list of character values it produces across all irreps, these
lists are orthogonal to each other.

Theorem IV.35 (Second orthogonality relation for irreducible characters). Let {px},.a be a complete set of in-
equivalent irreducible complex representations of a finite group G. Let C1,...,Cy be the conjugacy classes of G, with
|C;| the size of C; and g; € C; a fized representative. Then, for any 1 <1i,j <k,
. G|
> xalg) xalgy) = - dij
< |Cil
AeG

Proof. From Theorem V.32, the irreducible characters {xx}, cg form an orthonormal basis of Fungjass (G, C). Hence,
for the indicator function 1¢; of the conjugacy class Cj,

le;(9) = > (o Lo )a xalg): (92)

re@
Evaluating (92) at g = g; gives
dij = Z<X>\7 lo;)a xa(gi)- (93)
INte
Moreover,
(xxley)e = @ Z xa(h)" ¢, (h) = @ Z xa(h)* = WX/\(QJ) . (94)
heG heC;
Therefore,
5, — 16l N (0
=g > xalg)" xalga), (95)
Are@
and multiplying by |G|/|C;| yields the claimed formula. O

H. Projection onto an irreducible—isotypic component

In many applications it is useful to project onto a corresponding isotypic component — the direct sum of all copies
of a given irreducible representation inside the representation. This construction is central in block—diagonalising a
Hamiltonian, constructing symmetry—adapted bases, and, in quantum information, for tasks such as building projec-
tive measurements that respect a given symmetry (e.g., the so—called quantum Schur sampling [5, 6], which appears
as a subroutine in algorithms for spectrum estimation or quantum state tomography).

Let G denote the set of equivalence classes of irreducible representations of the finite group G. For each p € é,
write p, for a fixed representative of the class u, d, = dim p,, for its dimension, x,, for its character, and m, for the
multiplicity of p, inside a given representation p.
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Theorem IV.36 (Character projector). Let p: G — GL(V) be any finite-dimensional representation with

p = @ (ImM ® pu)' (96)
ueé
For a fized \ € @, define
dy .
W) = 1@y > xalg) plg). (97)
geG
Then:
1. IIx(p) is the identity on the A-isotypic component and 0 on all other isotypic components:
I(p) = P s (I, ® 1) (98)
,U,Eé

2. In particular, I1\(p) is a projector: II\(p)? = I\(p), and I1\(p) I1,,(p) = 0 for X # p.
3. The projectors resolve the identity:
> Ta(p) = Iv. (99)
pYte]
4. Tr Ix(p) = mydy (so rankIIx(p) = mady).
5. If p is unitary, then I\ (p) is Hermitian.
Proof. Apply Lemma IV.31 with f = x}. Part (3) of the lemma gives

. G|
Y00 () = D d Imu @ 1,,), A= O X (100)
9eG we@ "
By character orthogonality, (xx,Xu)c = 0xu. Therefore
. G
> xal9) ple) = %(Im ® I,,), (101)

geG

and multiplying by dy/|G| yields item (1). Items (2) and (3) follow immediately from the block form. For (4),
Tr 1\ (p) = Tr(Im, © I,,) = mady. For (5), if p is unitary then p(g)" = p(g7") and xa(g™") = xa(9)*, so Ix(p)" =
I\ (p)- O

Remark IV.37. Lemma IV.22 is recovered as the special case of Theorem IV.36 obtained by taking the trivial
character Xiriv(g) = 1 (with dyiy = 1). Substituting xx = Xriv into the formula for Iy (p) gives

1
Hes () = 77 > nla), (102)
geG
which is precisely the averaging operator projecting onto the fixed subspace V& of G-invariant vectors.

Remark IV.38 (Projector onto the antisymmetric subspace). Recall from Example IV.23 that the symmetric group
Sy, acts on (C%)®* via the unitary representation

V.S, — U(dk>, V(W)( |Zl> R |Zk>) = |i7r—1(1)> R !Z'ﬂ-—l(k)> .

Choosing the trivial character Xtriv(7) = 1 in Theorem IV.36 yields the symmetric-subspace projector Psyy from
Example 1V.23. The group Sy also has the sign character

Xsgn(m) = sgn(m) € {£1}.
Applying Theorem IV.36 with xx = Xsgn and dsgn = 1 yields

1
Pantisym = E Z Sgn(ﬂ-) V(ﬂ),
" weSy

the orthogonal projector onto the antisymmetric subspace

AF(C?) = {[6) € (C)®* | V(m) ) = sn(m) [¥) V€ Sy}
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I. The character table

We now package all irreducible character values of a group into a single square matrix: the character table.

Definition IV.39 (The character table of a Group). Let G be a finite group with conjugacy classes C1, ..., C} and
a complete set of inequivalent irreducible characters xa,,--.,Xxx, (recall that the number of conjugacy classes equals
the number of inequivalent irreducible characters). The character table of G is the k x k matrix

X (91) X (g2) -+ xa (gk)

OT(@) = XAQ:(gl) XAQ:(QQ) X)\gz(gk) |

X)\k'(gl) Xxk'(gz) - xAkkgk)

where each g; is a fixed representative of C;. Rows correspond to inequivalent irreducible representation, and columns
correspond to conjugacy classes.

As a convention, we usually arrange the table so that:

e The first row corresponds to the trivial irreducible representation, whose character is identically 1.

e The first column corresponds to the conjugacy class of the identity (g1 = e), so its entries x,,(e) give the
dimensions d,,, of the irreps.

Remark IV.40. The orthogonality relations endow CT(G) with a precise structure:
e Row orthogonality: By the first orthogonality relation (Theorem I1V.9),

Z ||G X)\ gj X)\h(gj) - 6ab'

Thus, the rows of CT(G) are orthonormal in C* when the j-th coordinate is weighted by /[C;|/|G].
e Column orthogonality: By the second orthogonality relation (Theorem IV.35),

k
G
ZX)\ gz X)\ (g_]) ||C|| 51]

a=1

Thus, the columns of CT(G) are orthogonal in C* and have squared norm %

Consequently, after scaling the j-th column by +/|C;|/|G|, the character table becomes a unitary matrix.
From the character table one can extract very useful information about the group and its representations.

Remark IV.41 (What the character table reveals at a glance). Let G be a finite group with conjugacy classes
C1,...,C} and inequivalent irreducible characters {xx}, cg- Then:

1. Irrep dimensions. From the first column (corresponding to the identity class), we read
dy = dim(py) = xa(e). (103)
2. Group order (dimension sum rule). Using the first column and Corollary IV.27,

Gl =) d. (104)

Ae@

3. Conjugacy class sizes. For a representative g; € C}, the second orthogonality relation gives

2 G
> o)l = i (105)
\e@ J
hence
G
0 = = C! (106)

> (g
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4. Decomposition multiplicities. If y is the character of any finite-dimensional representation of G, then the
multiplicity of py in it is

ma = (o = = 3 X(@)" xa(9). (107)
Gl 2

5. Detecting abelian groups. G is abelian if and only if all dy = 1, i.e. the first column of the character table
is entirely 1’s.

Thus, the character table gives us a compact summary of deep structural properties of the group G.
But what if the character table is not given to us? In that case, one can often reconstruct it by systematically applying
the character theory tools developed so far. One starts by determining all conjugacy classes and their sizes, which
already fixes the number of rows and columns of the table. The dimension sum rule

Gl = d}, dr €L,
xe@
then constrains the possible dimensions of the irreps. From here, one can try to fill in certain entries: the first row
for the trivial representation (all 1’s), the first column containing the dimensions, and the values of one-dimensional
characters, which must be roots of unity®. The orthogonality relations for rows can then be used to solve for many of
the remaining unknown entries, and the column orthogonality relations provide further constraints and consistency
checks. In many small groups this process determines the entire table.

1. Examples

Example IV.42 (Reconstructing the character table of S3). The symmetric group S3 has three conjugacy classes:
C = {6}7 Cy = {(12)7 (13), (23)}7 Cs = {(123)7 (132)}7

with sizes 1, 3, and 2, respectively. Since there are three classes, there are three inequivalent irreps. The dimension
sum rule gives

6 = di + d3 + d3,

and with dq = 1 (trivial rep), the only possibility is (d1,ds,ds) = (1,1,2). The one-dimensional irreps are the trivial
and the sign representation, which fixes the first two rows. (Recall that the sign representation sgn : S5 — {£1} sends
even permutations to 1 and odd permutations to —1.°)

Row and column orthogonality then determine the 2-dimensional row, giving:

|C1 Oy Cs
Xtiv| 1 1 1
Xsen | 1 —1 1
Xstd | 2 0 —1

Example IV.43 (Two-qubit Heisenberg Hamiltonian from Sy characters). Let X,Y, Z be the Pauli matrices and
consider the isotropic two-qubit Heisenberg Hamiltonian

H=J(X®X+YQY+2Z®Z), JeR

Let p == pperm be the permutation representation of Sy on C* ® C?, where p(e) = I ® I and p((12)) swaps the two
tensor factors. The swap operator satisfies the identity p((12)) = :(I®I+X®X+Y ®Y +Z®Z), so the Hamiltonian
can be rewritten as

H=J(@2p((12) - I 1I).

5 1If p: G — C/{0} is one-dimensional, then p(g)!?l = p(gl9!) = p(e) = 1, so p(g) is a |g|-th root of unity, where |g| is the order of g € G.
6 Recall: an even permutation is a permutation that can be written as a product of an even number of transpositions; odd otherwise. If
a permutation of n elements has m disjoint cycles (counting fixed points), it is even iff n — m is even, and odd otherwise.
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The character values of p are

From the Ss character table

the multiplicities
1
my =5 Y xa(9) x(9)
gEeS?

are Myriy = 3 and Mgy = 1. Hence

C*®C? 2= Vil @ Viga.
Since p((12)) acts as +1 on Vv and —1 on Vigy, the energy spectrum is
Eyiv =J  (deg. 3), Eyn = —3J (deg. 1).

Thus, we have found the energy spectrum of H using just the S, character table.

J. Fourier analysis from representation theory

The link with classical Fourier analysis becomes most transparent if we begin with the simple case of the cyclic
group Z,. We will see how the discrete Fourier transform arises naturally from expanding a function f : Z,, — C
in the orthonormal basis given by the irreducible characters of the abelian group Z,. This viewpoint will then be
generalized to define the Fourier transform on arbitrary finite groups.

1. The cyclic group and the discrete Fourier transform

Let us look at the cyclic group Z,, in detail. We begin by finding all of its irreducible representations.

Example IV.44 (Irreps of the cyclic group Z,). Let G = Z,, = {0,1,...,n — 1} with addition modulo n. Since G is
abelian, every complex irreducible representation is 1-dimensional (Theorem II1.23). By the dimension sum rule,

> d2 =G| =n, (108)
peé

and with d, = 1 for all p, there must be exactly n inequivalent irreps.
The group Z,, is generated by the element 1, and in G we have

1+1+4--+1=0.
—_——

n times

A 1-dimensional representation p is determined by p(1). Applying p to the above relation yields
p(1)" = p(0) =1, (109)

so p(1) must be an n-th root of unity.
Let w = €2™/™. For each k € {0,...,n — 1} define

pr(m) = k™. (110)

These are all 1-dimensional irreps, and pi 2 py if k # ¢ (since two 1-dimensional representation are equivalent if and
only if they are the same function). Since they are 1-dimensional, their characters coincide with the representations:

Xk(m) — e2m’km/n. (111)
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Example IV.45 (Characters as a basis for functions on Z, ). For a general finite group, characters form an orthonor-
mal basis for the space of class functions. Since Z, is abelian, every function f : Z, — C is a class function, so the
characters

xr(m) =¥ km/n =0, n—1,
form an orthonormal basis of Fun(Z,,, C) with respect to
n—1
1
(h, — h(m
n m=0
Thus any function f can be expanded uniquely as
n—1
Fm) = " {xk, )z, xin(m), (112)
k=0
where the coefficients are
~ 1 & .
k - —27r2km/n. 113
7o) = b ) m; (113)
Substituting x(m) back into the expansion gives
n—1 N
f(m) = (k) e2mikm/m, (114)
k=0

This is exactly the discrete Fourier transform (possibly, up to a complex conjugation in the coefficient formula, which
comes from the inner product convention).

2. Fourier transform of class functions

The Z,, example shows that characters can form an orthonormal basis for the space of functions on the group. For
abelian groups, every function is a class function, so the character expansion applies to all of them, and the discrete
Fourier transform emerges naturally. We now extend this idea to arbitrary finite groups, where characters form an
orthonormal basis of the (generally smaller) space of class functions.

Definition IV.46 (Fourier transform of class functions via irreducible characters). Let G be a finite group, and let
{Xﬂ}peé be the characters of its inequivalent irreducible complex representations. For a class function f : G — C, its
Fourier coefficient at p is

F(p) = (xp, e = |G|pr ), (115)

geG

where the inner product on functions is

Theorem IV.47 (Fourier inversion and Plancherel). Let f : G — C be a class function. Then:

(Inversion)  f(g) = > F(p) x,(9), (116)
pe@
(Plancherel) (f,h)c = Y _ f(p)" h(p). (117)
ped@
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Proof. By Theorem 1V.9, {Xp}pe @ is an orthonormal basis of the space of class functions. Thus
F= o Hoxo=>_ Fp)xs
peé pE@

Evaluating at g € G gives the inversion formula. For Plancherel, expand both f and h in the {x,} basis:

(f,h)e = <Z F(0) Xps > T(o) Xa> Zf ) (Xp» Xo )& = Zf

3. Fourier transform on non-abelian groups

The character Fourier transform applies only to class functions, where each Fourier coefficient f(p) is a single
complex number for each irrep p. For an abelian group, every function is a class function, so this covers all f : G — C.

For general (non-abelian) groups, functions need not be constant on conjugacy classes. The appropriate general-
ization is the mon-abelian Fourier transform, where the Fourier coefficient at p is a matrix.

Definition IV.48 (Non-abelian Fourier transform). Let G be a finite group and G a complete set of inequivalent
irreducible unitary representations. For f : G — C, its non-abelian Fourier coefficient at p € G is the d, x d, matrix

Flp) = |G‘ > flg) e Clrxds, (118)

geG
The collection {f(p)}pea is called the non-abelian Fourier transform of f.

By Theorem IV.8, the set of all matrix elements p;;(g), over all p € Gand1<i,j< d,, is an orthogonal basis of
Fun(G, C) with

Op,o ik Gt

<Pij,0k£>G = dp

Thus f has the expansion

= 4 Z pij» fa pij(9), (119)

pGG i,j=1

where

(pis fa = mzpm = [F],

zeG

Theorem IV.49 (Fourier inversion and Plancherel, non-abelian case). Let f,h € Fun(G,C). Then:

(oversion)  £(g) = 3" d, Tr ((0) p(9)). (120)
pE@
(Plancherel) (f,h)g = Z d, Tr (f(p)Tﬁ(p)) (121)
pea

Proof. From the orthogonal basis property,

S S b festa) = S, S5 T, ol

pEG 1,j=1 peG 1,j=1
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The sum over i, j is exactly Tr (f(p) p(g)), giving the inversion formula.
For Plancherel, expand both f and h in the above basis:

(f.h)a = dpds Y (piss 1) (ohe, D) (pigs ore) -
P, i,5,k,0

By orthogonality of matrix elements,

6;)70 6i,k 6j,€

<pij> UM>G = d,

This collapses the sum to
(e = dy Y [F(0)]}, [AP)],,-
peG 4
Recognizing the Hilbert—Schmidt inner product, we obtain
(f. e =Y d, T (F(p) h(p))-
peé
O

Remark IV.50. The Fourier transform on the abelian group Z, that we saw earlier is exactly the transformation
implemented by the standard quantum Fourier transform (QFT) in quantum computing, which is a key ingredient
in algorithms such as Shor’s factoring algorithm. The non-abelian Fourier transform defined here is the natural
generalization to arbitrary finite groups.
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V. COMPACT GROUPS: GENERALIZING FINITE-GROUP REPRESENTATION THEORY

Up to this point, we have considered only finite groups. However, many of the structural results we have seen
extend, with suitable modifications, to an important class of possibly infinite groups called compact groups. These
include, for example, U(n), SU(n), and SO(n), which occur naturally in quantum information theory.

Informally, a compact group is one whose elements form a set that is both bounded (it fits in a finite region) and
closed (it contains all its limit points), with multiplication and inverse operations continuous. It may have infinitely
many elements, but there is no way to “go off to infinity” within the group. For a precise, formal definition — which
requires some notions from topology and measure theory — we refer the reader, e.g., to [1, 12, 13].

Remark V.1 (Key facts for compact groups). Many fundamental theorems for finite groups remain valid for compact
groups if one replaces normalized sums over G by integrals with respect to the Haar measure u:

e Haar measure. Every compact group G has a unique normalized probability measure y that is invariant under
both left and right multiplication:

/fhg du(g /f ) du(g /fgh du(g), VheQG, (122)
intgldu(g) = (123)

In formulas, one makes the replacement

|G|Z - /d“

geG

e Unitarizability and complete reducibility. Let p : G — GL(V) be a finite-dimensional complex represen-
tation, and let {-,-) be any Hermitian inner product on V. Define the averaged inner product

(0, W) = /G (p(g), plg)w) du(g). (124)

This is G—invariant, and in a suitable orthonormal basis all p(g) are unitary. As in the finite case, this implies
complete reducibility (Maschke’s theorem remains valid).

e Irreducible representations. A compact group may have infinitely many inequivalent irreducible represen-
tations. For example:

— SU(2) has irreps labeled by j € {0, 3,1,2,...} with dimension 2j + 1.

— SO(3) has irreps labeled by j € {0,1,2,...}, also with dimension 25 + 1.

e Schur orthogonality. For finite-dimensional irreps p and o of G,

_ 1
/Gpij (97 ") oke(9) dinlg) = == 3p.o 0k it (125)

p

/pr(g)* Xo (9) dp(g) = 0p,0- (126)

e Peter—Weyl theorem. The matrix coefficients of all finite-dimensional unitary irreps of G form an orthogonal
set. Moreover, finite linear combinations of these coefficients are dense in the space of continuous functions on
G. For G = SO(3), the matrix elements are the spherical harmonics, which therefore form an orthogonal basis
for functions on the sphere.

In summary, by replacing sums with integrals over the Haar measure, the core results of finite-group representation
theory — unitarizability, complete reducibility, Schur’s lemmas, orthogonality, and the Peter—Weyl theorem — extend
directly to the compact-group setting.
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VI. SCHUR-WEYL DUALITY

Schur—Weyl duality is a cornerstone of representation theory, with far-reaching applications in quantum information
theory [4, 7]. Before presenting the duality in full generality, we begin with a particular case that already forms the
basis of many of its applications: the characterization of the commutant of the tensor-power representation of the
unitary group. Consider the Hilbert space

H = (CH)®k, (127)

Our goal is to determine the operators on H that commute with U®* for every U € U(d). We will show that this
commutant is exactly the linear span of the permutation operators V (), m € Sk:

Comm ({U®* : U € U(d)}) = span{V(r): 7€ S)}. (128)

A. Commutant of tensor-power unitaries: span of permutations

Let us start with some formal definitions.
Definition VI.1 (Tensor-power and permutation representations). Let H = (C%)®k,

o The tensor-power representation of U(d) is
p:U(d) — U(H), p(U) = U®*. (129)
e The permutation representation of Sy, is
V:Sy = UH), Vi) v) @@ |ug) = |vﬂ71(1)>®~~~®|vrl(;€)>. (130)
Both are unitary representations:
p(UrU2) = p(U1)p(U2), V(mo) =V(m)V (o),
and
p()F = p(U"), V(mF =V
Definition VI.2 (Commutant). For a subset S C End(V), the commutant is
Comm(S) :={X € End(V): [X,S] =0forall S€S}. (131)

We start with an elementary observation: permutation operators belong to the commutant of the tensor-power
representation U®*, and conversely U®* belongs to the commutant of the permutation representation.

Lemma VI.3 (Commuting actions). For all U € U(d) and m € Sk,
V(m)U®* = Uk V(x). (132)

Proof. Tt suffices to verify the identity on pure tensors and extend by linearity:

V(mUEF vy vg) = V(m) (|Uv1) @ -+ @ [Uwy)) (133)
= |Uvp-1(1)) @ -+ @ |Uvr-1(s)) (134)
= U (|orr(1)) @+ @ [vrr 1)) (135)
=U®*V(7m) vy ---vp) . (136)
O
From Lemma VI.3 we obtain
span{V(m) : 7 € Sy} € Comm({U®":U € U(d)}). (137)

In the following theorem we prove the reverse inclusion, and so showing that the commutant of the tensor-power
representation of the unitary group is exactly the linear span of the permutation operators.
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Theorem VI.4 (Unitary commutant). For all d,k € N,
Comm({U®* : U € U(d)}) = span{ V(r) : 7 € Sy }, (138)
where V(1) permutes tensor slots via
V() lits - yin) = |in-1(1)s - in-1(k)) - (139)

Proof. We proceed in several steps.
Step 1 (Inclusion D). For every U € U(d) and 7 € S,
V(m)US*V (x)t = Uk, (140)
since V() merely permutes tensor slots. Thus span{V () : 7 € S} C Comm({U®*}).
We are left to prove the reverse inclusion, for this we require that a generic element in the commutant must

commute with tensor powers of diagonal unitaries, computational basis permutations tensor powers, and Discrete
Fourier Transform tensor powers.

Step 2 (Diagonal phase restriction). Write

Q= ZQZ,J\I><J|7 I=(i1,... i), J = (Jr,---,0%) (141)

1,J

Let D = diag(z1, ..., zq) with z, € U(1). Then

d
DIy = (T 2 0) 1), (142)
r=1
where n,(I) = |{¢ : i, = r}|. Thus

d
DRI (J[D1F = (] 22O D) 1)) (143)
r=1
Commutation D®*QD'®* = Q for all phases forces

Qrs#0 = n.(I)=n.(J) Vr (144)

Equivalently, I and J must contain the same multiset of symbols. So J is obtained from I by some permutation of
slots. Hence

Q- ) Qrs 1)1, (145)

I1,J:
J is a permutation of I

Step 3 (Alphabet permutation restriction). Let P € S; act as P|r) = |p(r)). Then
PERID(J|PYE = [p(D)) (p(J)]- (146)
Commutation P®*QPT®* = () forces
Q1,0 = Qp(1) p()- (147)
So coefficients cannot depend on the actual alphabet symbols, only on the equality pattern p(I), i.e. the partition of

{1,...,k} into blocks of equal entries of I.
Thus there exist coefficients ¢y, such that

Q=" Y cpTrw,  Trpi= . IDix(D). (148)
P

TESk I:p(I)=p
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Step 4 (Avoiding repetitions). If I has repeated entries, then two different 7 may yield the same operator
|I){m(I)|]. For example, (i1,i2) = (1,1) is invariant under (12). This duplication is exactly the action of the stabilizer

subgroup
Stab(p) = { s € Sy, : s(I) = I for all I with p(I) =p}.

(149)

So distinct operators T, are in bijection with cosets 7 - Stab(p). Choose a set of representatives R(p) C Si. Then

we may write

Q= Z Z CTrpTTrp

TER(p)
Step 5 (Matrix elements of T} ;). For basis states N, M,

(NITwplM) = > (N|I){r(])|M)

Lp(I)=p
= Hp(N) = p} 1H{M = 7(N)}.
So

(NIQIM) = >~ crpny {M =7(N)}.
~ER(P(V)

By the coset-representative choice, there is at most one 7 with M = 7(N). Thus

(N|QIM) = Crp(N), M =m(N) for the unique 7 € R(p(N)),
0, otherwise.

Step 6 (Fourier transform conjugation). Let U be the discrete Fourier transform

Ulj) = =3 wa),  w=em
=0

The relevant matrix elements are

@lUl) = i, (IUTa) = .
For N = (n1,...,n;) and M = (mq,...,mg) we compute

(N|USFT, JUTF M) = Y (NUH|I) (r(I)|UT®F| M),
Iip(I)=p

First factor. We have
k k .
(N|U®*|I) = H (ne|Ulig) = H 1d wiene = d7k/2 2y tene
(=1 (=1
Second factor. Using m(1) = (ix—1(1), -, in-1(x)),

k k
(m(I) UT®’“|M H Zﬂfl(@\U”mg Hﬁwﬂflmme
£=1 =1
=d / Z?:l iwfl(e)ml.
Product. Multiplying the two gives

(N[USH(T) (r()UTOF|M) = d—* wems fene T frmrime,

o1

(150)

(151)

(152)

(153)

(154)

(155)

(156)

(157)

(158)

(159)

(160)

(161)



Equivalently,
—dk WZ’;=1 ip (nz—mw(z)). (162)

Block parametrisation. If p(I) = p, then for each block S € p all entries iy with ¢ € S are equal to some
xg € {0,...,d —1}. So the exponent becomes

k
ZMW — M) = Z l’s(zne - Z mt). (163)
=1 Sep Les ter(S)
Summing over all I with pattern p is equivalent to summing over each choice of block variables xg. Hence

d—1
T 14 an) T ( 32 e (BB ) ). 169

Sep \zs=0

Geometric sum. For any integer a,

d—1 .
Zw”:{d’ a=0 (mod d), (165)
=0 0

, otherwise.

Final result. Therefore,

(N|USFT, yUTOF M) = dPI7F TT 10D ne= Y my (mod d) ¢ . (166)
Sep | res tem(S)

Step 7 (Fourier comparison). We now compare the matrix elements of @) before and after Fourier conjugation.
LHS. From Step 5 we know

(NQIM) = Y crpivy UM =7(N)}. (167)
ER(P(N))

By the coset-representative choice, there exists at most one 7 € R(p(N)) with M = 7(N). If such a 7 exists, denote
it mg. Then

(N|Q|M) = {Cm),p(N)’ it M = mo(N) for some 7y € R(p(N)), (168)

0, otherwise.

RHS. From Step 6 we have

(NUSFQUIeF M) =3 S o AT Y= Y me (mod @)}, (169)
p

TER(p Sep les tem(S)
Now assume that M and N have the same multiset of symbols. Then there exists a unique representative my €
R(p(N)) such that M = 7o(N). For (m,p) = (m,p’), all the congruence conditions are satisfied identically, hence

the product of indicators equals 1. For all other representatives m # 7, the condition M = 7(N) is not met, so the
product of indicators vanishes. Therefore

(N|USFQUTEF|M) =3 " cry p dPITF. (170)
p

Comparison. Commutation requires

Crop(N) = D CropdPI T VA (171)
p
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Since the right-hand side is independent of the actual pattern p(N), it follows that ¢, , is independent of p. Denote
this common value by cr,.

Step 8 (Collapse to permutation operators). From Step 7 we know that the coefficients are pattern-
independent:

Cr,p = Cr, v, p. (172)

Hence

Q = Z Z C7rT7r,p- (173)

P mTER(p)

Regrouping by . For each fixed m € Sk, collect all contributions where 7 was chosen as the representative in R(p).
Then

Q= Z%( > Tﬂ,p) (174)
p

TESK :
TER(p)

Matriz elements of the inner sum. Fix m € S, and basis states N, M. Then

D (NITeplM) = D L{p(N) = p} 1{M = =(N)}. (175)
p: p:
TER(P) TER(P)
For given N, only the pattern p(V) is relevant, and it belongs to the indexing set. Thus
> (N|Typp| M) = 1{M = 7(N)}. (176)
p:
TER(P)
This is precisely the matrix element of the permutation operator V(7). Hence
Y Tep = V(). (177)
p:
TER(P)

Final expression. Therefore

Q = Z eV (m). (178)

TESK
Step 9 (Conclusion). We have shown
Comm ({U®*}) C span{V(r) : m € Si}. (179)
Combined with Step 1, this proves equality. O

a. Consequences for quantum information theory. Theorem VI.4 immediately implies a simple but powerful fact:
any linear map that commutes with U®¥ for all U € U(d) must be a linear combination of permutation operators. A
particularly important example is the k-th moment twirling channel, defined by

Pp(X) = / Uk x Utek qu,
U(d)

where the integral is over the Haar measure on U(d). Haar invariance ensures that ®;(X) commutes with U®* for
all U, and so by Theorem VI.4 it must take the form

ou(X) = 3 exl(X) V()
TESk

for certain coefficients ¢, (X) € C.
This simple structural fact is the basis for many standard tools in quantum information theory, including the
analysis of unitary designs, the Weingarten calculus, and Schur—Weyl-based protocols; see, e.g., [7, 14, 15].
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B. Full Schur—Weyl duality

In Theorem VI.4 we established one direction: the commutant of the tensor-power representation {U®* : U € U(d)}
is precisely the linear span of the permutation operators {V(r) : m € Si}.

We now turn to the converse: the commutant of the permutation representation {V(w) : 7 € Si} is exactly the
linear span of the tensor-power unitaries {U®* : U € U(d)}.

Combining these results yields the more general powerful version of Schur-Weyl duality: the two actions U®* and
V (7) commute, each forms the full commutant of the other, and together they give a simultaneous block decomposition
of (C%)®* into a direct sum of tensor products of two irreducible spaces — one carrying an irreducible representation
of U(d) and the other of S, — with each group acting nontrivially only on its own factor.

We will now state the theorem.

Theorem V1.5 (Schur—Weyl duality). There exists a unitary decomposition
"= PM®P, (180)
AEA

where A is a finite index set labeling the inequivalent irreducible components that occur in (C)®* under either action.
For each \ € A, M), is the U(d)-multiplicity space and Py is the Sy-multiplicity space.”
Moreover, for allU € U(d) and 7 € Sk,

UM pap = MO @1Ip, V(M| op = Ta, @ Oi(m), (181)

where each Ay : U(d) — U(My) and each Iy : S, — U(Py) is an irreducible unitary representation. In particular,
Comm ({U®* : U € U(d)}) = span{V(r): 7 € Sk}, (182)
Comm({V () : m € Sk}) = span{U®" : U € U(d)}. (183)

To complete the proof, we must first prove two facts:
1. The commutant of the permutation operators {V ()} is exactly the span of {U%*}.
2. In the decomposition (180), the subrepresentations Ay and ITy are irreducible.

The first will follow from the so-called double commutant theorem that we present below together with (182). The

second will be shown by observing that any proper invariant subspace of M) (respectively Py) would lead to a

nontrivial operator in the commutant of U®* (respectively V (7)), contradicting the commutant identities above.
We will start with proving the so-called double commutant theorem.

1. Double commutant theorem

To prove the doulbe commutant theorem, we first need a lemma.
Lemma V1.6 (Block commutant). Let X,Y be finite-dimensional complex Hilbert spaces. Then
Comm(Ix ® End(Y)) = End(X) ® Iy.
Proof. Fix an orthonormal basis {|i)}!; of Y and write E;; := |i)(j|. Every T € End(X ®Y") has a unique expansion
n
T=>Y T,;®FE; TeEnd(X).
ij=1
The commutation relations [T, Ix ® E,,] = 0 for all p, g are equivalent to

ZTqJ’ Q@ Ep; = ZTip ® Eiq (Vp,q),
J i

7 A convenient choice is to take A to be the set of partitions A F k with at most d parts (Young diagrams). With this identification, Ay is
the irreducible U (d)-representation of highest weight X, and IT, is the Specht module S* of Sj,. However, we will not need these details
here.

54



using EqpFeq = 0peEqq. Since the matrix units {E,;} are linearly independent, comparing coefficients yields: (i)
Ty = 0 for all j # ¢; (ii) T;p, = 0 for all ¢ # p; and (iii) T,, = Ty, for all p,q. Thus T;; = 0 when ¢ # j, and all
diagonal blocks coincide with some S € End(X), i.e., T11 = Tog = -+ = T, = S. Hence

T=> S@E;=Saly €End(X)® Iy,
j=1

which shows Comm(/x ® End(Y)) € End(X) ® Iy. The reverse inclusion is immediate because S @ Iy commutes
with Ix ® B for every B € End(Y'). O

Proof. Fix an orthonormal basis {|i)}7; of Y and set E;; := |i){(j|. Every T € End(X ® Y") has a unique expansion
T=5,,;Ti;j®E; with T;; € End(X). Imposing (I® Epg)T = T(I®Ey,) for all p, g gives 3. Ty, @ Ep; = 3, Tip @ Eyg.
By linear independence of {E,}, for each p,q: T,; = 0 for j # ¢, T;, = 0 for ¢ # p, and T}, = Ty, for all p,q. Thus
T'=3%,Tj;®FEj; =S®ly with S € End(X), proving the claim. O

Theorem V1.7 (Double commutant for compact-group unitary reps). Let G be a compact group and p: G — U(V)
a finite-dimensional unitary representation. Let

A= span{p(g) : g € G} C End(V). (184)
Then
Comm(Comm(A)) = A. (185)
Proof. We have:

1. Isotypic decomposition and the first commutant. By complete reducibility of unitary reps of compact
groups, there is a unitary decomposition

Ve@PVeo M, pl9) = @D raly) @ I, (186)

aEN a€A

where the p, are pairwise-inequivalent irreducible representations on V. By one of the main consequences of
Schur’s lemma we explored in the previous sections (see Proposition I11.24), we get

Comm(A) = @ Iv, ® End(M,,). (187)
aEN

2. Second commutant via the block-commutant lemma. Applying Lemma VI.6 to each block gives

Comm (Comm(A)) = @ End(V,) ® I, (188)
aEA

3. Identify the bicommutant with A. We want to show that A =@  End(V,) ® Iys,. The inclusion

A € @BEnd(Vo) @ Iy, (189)

is immediate from the block form of p(g). For the reverse inclusion, fix o and choose an orthonormal basis
{lei)}%= of V,, with d, = dim V,,. Using normalized Haar measure dg on G, define

X = d, /G pa(9); plg)dg € A (190)

On the V3 ® Mg block we have

xi7 VMg (da/Gpa(g)ij ps(9) dg) @ Ingg- (191)
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By the Schur orthogonality relations for matrix coefficients,

___ Sas Ot 0y
[ 2@ p(aiy dg = SR (192)
G o

Hence
do [ 220@05 5(9)dg = 8 le0)es] (193)

It follows that X l(]a) acts as |e;){(e;j| ® Inr, on the a-block and vanishes on all others. Since Xl(]a ) is a linear
combination (in fact, an integral) of p(g)’s, each matrix unit |e;)(e;| ® Inr, belongs to A. As the {|e;){e;l}i;
span End(V,,), we have

End(V,) ® In, € A (194)

Summing over a and comparing with (188) yields

Comm (Comm(A)) = @ End(V,) ® Ing, = A. (195)

Proposition VI.8 (Commutant of the permutation representation). Let H = (C%)®*. Then

Comm({V () : m € Sx}) =span{U®* : U € U(d) }. (196)
Proof. We have
Comm ({V () : m € S}) = Comm(span{V () : 7 € Si}) (197)
= Comm (Comm({U®" : U € U(d)})) (198)
=span{ U®* : U c U(d) }. (199)

In the first step we used the fact that Comm(S) = Comm(span(S)) for any set of operators S. In the second step
we used Theorem V1.4, which identifies Comm({U®* : U € U(d)}) with span{V(7) : 7 € Si}. In the third step we
applied the double commutant theorem (Theorem VI.7). O

2. Irreducibility in the Schur—Weyl blocks

We have established that the commutant of the tensor-power representation is the span of permutation operators,
and conversely, the commutant of the permutation representation is the span of tensor powers. To complete the
proof of Schur—Weyl duality, it remains to show that, in the decomposition (180), each factor carries an irreducible
representation of its respective group.

We first record a useful converse to Schur’s lemma.

Proposition VI.9 (Converse to Schur’s lemma). Let U : G — U(H) be a finite-dimensional unitary representation.
Then

H is irreducible <= Comm({U(g): g € G}) = Cly.
Proof. (=) This is Schur’s lemma.
(<) Suppose 0 # W # H is a nontrivial invariant subspace. Unitarity implies W+ is also invariant. Let Py be
the orthogonal projector onto W. Then U(g)PwU(g)t = Py for all g, so Py € Comm({U(g)}) but Py ¢ Cly,

contradicting the assumption. O

We can now prove that the two families of subrepresentations in (181) are irreducible.
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Lemma VI.10 (Irreducibility in the Sj~decomposition). Let H = (CH)®* and first decompose H by fully reducing
the Si—action:

H = @MA®PA»
AEA

where V() acts as
V(T")|MA®PA = I, @ I\(7),
and each TIy : Sy — U(Py) is irreducible by construction of the decomposition. The U®* action is block diagonal with

Ut ap, = A0 @ Ip,.

Then both Ay : U(d) — U(M)y) and IIy : S, — U(Py) are irreducible.

Proof. By how the decomposition is constructed, each IT acts irreducibly on Py.o For Ay, from (182) we have

Comm ({U®}) ‘M@m = Iy, ® End(Py).

This implies that the only operators on M) commuting with all A (U) are scalar multiples of the identity:
{X € End(M)) : [X,A\(U)] =0VU} = Clyy, -
By Proposition V1.9, A, is irreducible. O
We now have all the ingredients to state and prove the full Schur—Weyl duality.
Theorem VI.11 (Full Schur-Weyl duality). Let H = (C*)®*. There exists a unitary decomposition

"= PMoP, (200)
AEA

such that:
o UYF qcts as A\(U) @ Ip, for some irreducible representation Ay : U(d) — U(M,);
o V() acts as Ing, @ IIx(m) for some irreducible representation I1y : Sy, — U(Py).
Moreover, the commutants are

Comm ({U®* : U € U(d)}) = span{V(r) : m € Sy}, (201)
Comm({V(r) : 7 € Si}) = span{U®* : U € U(d)}. (202)

Proof. The commutant identities follow from Theorem VI.4 and Proposition VI.8. To obtain the decomposition, we
first block-diagonalise the Sk-action:

H=@PM P, V), op = I @(7),
AEA

where each II, is irreducible by construction, and U®* acts trivially on Py. Defining Ay by
U®k|M>\®P>\ = A\U) ® Ip,,

Lemma VI.10 shows A, is irreducible. O

C. Applications in quantum information

Schur-Weyl duality has several direct applications in quantum information theory [5, 7]. A key example is the
simplification of measurements on i.i.d. quantum states.
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D. Learning properties of a state from i.i.d. copies

Suppose we are given k i.i.d. copies of an unknown state p on C%, i.e. the joint state p®* on H = (C%)®* and we
wish to measure it to infer some property of p.

A measurement is described by a positive operator-valued measure (POVM), i.e. a family of positive semidefinite
operators {E; }zcx C End(H) satisfying ) ., E, = I3. If outcome x occurs, the probability is

Prob(z) = Tr(E, p®*).

Since p®* is invariant under any permutation of its k subsystems, we may permute-twirl each POVM element
without changing the measurement statistics:

E, = % > V(m) E.V(n)T, (203)
" TESK
Tr(E, p®F) = Te(E, p®F). (204)

Here V(7) is the unitary that permutes tensor factors. Each E, commutes with all V(7), hence lies in
Comm({V (7)}) = span{U®* : U € U(d)}.
By Schur—Weyl duality, in the block decomposition

(CH®F = P My Py, (205)
AEA
each Ea: acts as
Eac = @ F)x,z & IP>\7 (206)
AEA

with arbitrary F , on the M) factors (where U(d) acts irreducibly) and identity on the Py factors (carrying the Sj
action).

Hence, without loss of generality, for any task involving i.i.d. copies (e.g. full state tomography), one may choose
POVM elements to be supported only on the M, factors.

E. Learning properties of the spectrum

Many important tasks in quantum information aim to determine properties of the spectrum (the eigenvalues) of a
quantum state p, rather than its eigenvectors. Examples include estimating purity, reconstructing the entanglement
spectrum, or fully learning the eigenvalues of p (also known as spectrum estimation [16]).

Since the spectrum is invariant under conjugation p + UpUT by any U € U(d), these tasks satisfy the invariance

property
Prob(z | p) = Prob(x’UpUT), YU eU(d), Vz € X, (207)

where Prob(x | p) denotes the probability of obtaining outcome z when measuring p®* with a POVM {E,},cx. In
other words, the outcome x — which encodes the property of the spectrum that we wish to estimate — must be
unchanged if p is conjugated by an arbitrary unitary.

The U(d)-invariance (207) allows us to replace each POVM element by its U(d)-twirl:

E, = / U®* B, UT* Ao (U), (208)
U(d)

without changing the measurement statistics. Indeed,
Tr(E, p®F) = / Tr(E, (U pU)®*) dppaar (U) (209)

U(d)
= / Prob(z | UTpU) dptttaar (U) (210)

U(d)
= Prob(z | p), (211)

58



where the last equality follows from (207).
By construction, F, commutes with all U®* (by left- and right-invariance of the Haar measure), hence lies in

Comm({U®*}) = span{V () : 7 € Si}.
In the Schur-Weyl block decomposition,
(CH®F = P My P,
AEA

this means

E, = @C)\,z Iy, ® Ip,,
AEA

with scalar coefficients cy ;.
Thus, for U(d)-invariant tasks, optimal POVMs may be taken to be blockwise scalars in the Schur—Weyl basis,
acting trivially on both M, and P, except for an overall weight per block.

Positivity of the POVM and the completeness relation ) FE, = I translate into simple constraints on the coefficients

{C)\’I}Z

ez >0, VAEA Vxedk, (212)
dea=1 VAe€A (213)
reX

In the special case of projective measurements, these coefficients are further restricted to

exg €{0,1}, VA .

A particularly natural choice is ¢y 5 = 0y, which corresponds to a projective measurement onto the A-isotypic
component in the Schur—Weyl decomposition. In this case, the POVM element for outcome A is the orthogonal
projector

M, = Iy, ® Ip,.

From the general representation theory result (Theorem IV.36), the projector onto the A-isotypic component of the
permutation representation

VS, — U((ChH®F)

is given by

= 2 3 ) Vi), (214)

TESE

where dy = dim Py and x is its character. The probability of outcome A when measuring p®* is then

d

pO) = Te(y p74) = 2 37 s (m)” Te(V(m)p®), (215)

TESk

where Tr(V (7)p®*) = [Teeoyetes(n) Tr(pl°l), and the product runs over the disjoint cycles ¢ of m, with |c| the length
of each cycle. In particular, p(\) depends only on the spectrum of p through its power sums Tr(p™).

This is exactly the Schur measurement used in Schur sampling protocols [5], where one first measures the irrep
label A (the symmetry type) and then optionally processes the residual state within the corresponding block.

In summary, the combination of permutation symmetry (from identical copies) and unitary invariance (from de-
pendence only on the spectrum) forces the optimal POVM to lie in a highly symmetry-constrained subspace. This
illustrates the power of exploiting symmetry in quantum information theory, and underlies the Schur sampling tech-
nique widely used in the literature [5, 7].
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VII. TENSOR PRODUCT OF REPRESENTATIONS

Given two representations of the same group, we can combine them to form a new one acting on the tensor product
space.

Definition VII.1 (Tensor product representation). Let p; : G — GL(V;) and p2 : G — GL(V2) be (finite-
dimensional) representations of a group G over C. The tensor product representation is the map

p1®@p2: G — GL(V; @ Va), (p1 @ p2)(9) = p1(g) @ p2(9)- (216)

Lemma VII.2 (Basic properties of the tensor product representation). Let p; : G — GL(V1) and ps : G — GL(V%)
be (finite-dimensional) complex representations. Then:

e Representation property: p; ® ps is a well-defined representation of G, and the identity acts as Iy, ® Iy,.

e Character of a tensor product: The character of p1 ® ps is the pointwise product of the characters:
Xpr1@p2(9) = Xp1(9) Xp2(9), Vg €G. (217)

e One representation 1-dimensional: If dimV; = 1 and ps is irreducible, then p1 ® po is irreducible. The
same holds with the roles of p1, p2 swapped.

e General reducibility: If dimV; > 1 and dim Vo > 1 are irreducible, then py ® ps need not be irreducible.
Proof. We have:
e For g, h € G,

(1 @ p2)(9)(p1 @ p2)(h) = (pr(g)pr(R)) @ (p2(9)p2(h)) = p1(gh) @ p2(gh) = (p1 @ p2)(gh), (218)
and (p1 ® p2)(e) = Iy, ® Iy,.
e This follows from the fact that Tr(A @ B) = Tr(A) Tr(B) for matrices A, B.
o If dim V; = 1 with basis |v) and p1(g) |v) = A(g) |v), then

(p1 @ p2)(9) = A(g) [v)v| @ pa(g).

Hence U C V] ® V4 is G-invariant iff U = |[v) @ W with W C V5, G-invariant. In particular, p; ® po is irreducible
iff po is (and vice versa).

e Let V=V, =V, with dimV > 1. The subspace
Sym(V) := span{|v1) ® |v2) + |v2) @ |v1) : v1,v2 € V}

is not the whole V. ®@ V' (for example, any vector in Sym(V') is orthogonal to any vector of the form |w;) ® |we) —
|wa) ® |wy) with |wy) and |we) linearly independent). Moreover, Sym(V) is G-invariant: if u = |v1) ® |ve) +
‘U2> ® |U1>7 then

(p(9) @ p(g9))u = p(g) [v1) @ p(g) [v2) + p(g) lv2) @ p(g) [v1) € Sym(V).
Since Sym(V') is a proper nonzero G-invariant subspace, V ® V' is reducible.
O

Thus, p®p is a representation of GG, and therefore it can be decomposed as a direct sum of irreducible representations
with certain multiplicities. This leads us to introduce the so—called Clebsch—Gordan integers.

Definition VIIL.3 (Clebsch-Gordan integers). Let py, p,., p be irreducible representations of G. The Clebsch—Gordan
integer Ny, is the multiplicity of p, in the decomposition of the tensor product p) ® p:

P& pu = EPNL o, (219)

with each N, € Z>o.
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Proposition VII.4 (Character formula for Clebsch-Gordan integers). Let xx, X, X» be the characters of px, pu, pu,
respectively. Then

N3, = 0oXw Xv)as (220)

where xaXu denotes the pointwise product of characters and (-,-)g 1is the usual character inner product. (Thus, we
also have NY, = N\.)

Proof. We have xxgu = XaXu- And by definition of Ny, we also have
Xoaan = Y N X (221)

Taking the inner product with x, and using the orthonormality of irreducible characters,

<X)\X/—L?XI/>G = ZN)I\/# <XV'7 XV>G = N,\U# (222)

O

Remark VIL5. From a quantum mechanics course, you might remember this example. Take G = SU(2), the
group of single-qubit rotations. The standard (fundamental) irreducible representation is p : G — GL(C?), given by
p(U) = U acting on a single qubit in the computational basis {|0),|1)}. This representation is irreducible, since no
nontrivial subspace of C? is invariant under all single-qubit rotations — this is clear by thinking in terms of the Bloch
sphere, where any nonzero state vector can be rotated.

For two qubits, the group acts via the tensor product representation

p®p:G— GL(C?® C?), (p2p)(U)=UcU,

with respect to the computational basis {|00),|01),]10),|11)}. In this case, it is possible to show that the Clebsch—
Gordan decomposition for SU(2) is
C?eC? = C3qCl,

where the 3-dimensional part is the symmetric (triplet) subspace and the 1-dimensional part is the antisymmetric
(singlet) subspace. Here the Clebsch-Gordan integers (with irreps labelled by their dimensions) are N3, = 1 and
N2172 =1.

It is important to note that the Clebsch—Gordan coefficients are not the same as these integers: the integers give
the multiplicities in the decomposition, while the coefficients are the entries of the unitary change of basis from the
computational basis to one adapted to this decomposition.

For SU(2) it is standard to label irreps by a spin j € {0, %,1, %,...}, denoted Vj, with dimV; = 25 + 1. Here

Vi/2 = span{|0),[1)} is the spin-1 irrep. Then, the above decomposition
CeC’=C’eC
corresponds to
Vip@Vip=2VioW,

with Vi = span{|00), %(|01> +110)),|11)} (spin-1, triplet) and Vp = span{%(\Ol) —[10))} (spin-0, singlet).
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NOTATION (QUICK REFERENCE)

Symbol Meaning

G Finite group; identity e; operation written multiplicatively.

|G Order (number of elements) of G.

H<L<G H is a subgroup of G.

HAG H is a normal subgroup (gHg~! = H for all g € G).

C(g) Conjugacy class of g: C(g) = {hgh™':h € G}.

Cl(G) Set of conjugacy classes of G.

\% Complex vector space (representation space).

p:G— GL(V) (Finite-dimensional) representation of G on V.

d, Dimension of p (i.e. dim V).

Xp Character of p: x,(9) = Tr(p(g)).

G A complete set of inequivalent irreducible representations (irreps).

dx Dimension of irrep A € G.

m Multiplicity of irrep A in a given representation p.

Ci,...,Cg Conjugacy classes of G; g; € C; a fixed representative.

W, d)a Inner product on functions G — C: é Z »(g)*(g).
geG

Comm(p) Commutant: {T € End(V) : Tp(g) = p(9)T Vg € G}.

V& Fixed subspace: {v € V : p(g)v =v Vg € G}.

I\ (p) Projector onto the A-isotypic component of p.

BASICS OF REPRESENTATION THEORY — CHEAT SHEET

Groups. A group (G, -) satisfies closure, associativity, has an identity e, and inverses g~! for all g € G. The order of
G is |G|

A subgroup H < G is a subset that is itself a group under the same operation.

A left coset of H is gH := {gh : h € H}; a right coset is Hg := {hg : h € H}. Cosets partition G; the number of
cosets [G : H] is the indezx of H in G.

A normal subgroup H < G satisfies gH = Hg for all g € G (equivalently, gHg~! = H). These are exactly the
kernels of group homomorphisms.

A group homomorphism is a map ¢ : G — K between groups such that

©(9192) = p(g1) p(g2) Yg1,92 € G.

The kernel is kerp = {g € G : ¢(g9) = ek}, and it is always a normal subgroup.
The conjugacy class of g is C(g) := {hgh™! : h € G}. Two elements are conjugate if they lie in the same conjugacy
class.

Representations. A representation is a homomorphism p : G — GL(V). Over C and finite G, one can choose a
basis where p(g) are unitary. Irreducible <= no nontrivial G-invariant subspace. Equivalent reps: p’ = TpT 1.

Maschke: Every finite-dimensional p over C decomposes as

p= Pei™, V=PHEmen). (223)

re@ pYte]
Schur’s Lemma. For irreps p,o:
p#0c = Homg(V,,V,) = {0}, (224)
p=o = Homg(V,,V,)=C-1I. (225)
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Corollary: If G is abelian, all irreps are 1-dimensional.

Characters. x,(g9) = Tr(p(g)) is a class function. Basic facts:
Xo1@p2(9) = X1 (9) + X2 (9); Xo(97") = X0(9)",

Orthogonality. (Row)
(X2, Xu)a |G| > a9 xu(9) = -
geG
(Matrix elements) For unitary irrep A of dim djy:

Oxp Ok 0
((p)igs (puda) g = = =

(Column) For ¢, € Cy, g; € Cy:

N G
> xalg) xalgy) = |C|| dij-
re@ !

Key formulas. Multiplicity:

<Xan>\ |G‘ ZXp

geG

Dimension sum:

Gl =) d.

Ae@
Projector onto A-isotypic:
A(p) o ZXA ), rankIly = mydy.
\ |
Commutant dimension:
dim Comm(p) = (X, Xp)c |G| > Ixo(9)

geG

Regular representation:

|G‘ g=e€, r
Xreg(9) = {0’ e Mm% = dy.

Character tables (at a glance). A fundamental fact:

#{conjugacy classes of G} = #{inequivalent irreducible representations of G}.

This is why the character table is a square matrix. Rows < irreps, columns <+ conjugacy classes, g; € Cj:

Z||G xXa(95)" Xu(95) = Oxps
1G] 5

> xalg) xalgy) = iCil dij-
xe@
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